MA 16010 Lesson 7: Basic rules of differentiation

Recall: The derivative of $y=f(x)$ at x is defined via limits as:
(other notation for derivatives:
Today we look at practical rules for computing derivatives.
0. Constant rule: If $f(x)=c$ is a constant function, then $f^{\prime}(x)=$ \qquad . Justification:

1. Power rule: We have

$$
\left(x^{n}\right)^{\prime}=
$$ Examples:

- $f(x)=x^{0}=$ \qquad :
- $f(x)=x^{1}=x:$
- $f(x)=x^{2}$:

Note: The rule works not only for n from non-negative integers, but for all exponents, including negative, rational, irrational, ... numbers. Examples:
2. Trig and exponential functions: We have

$$
\begin{aligned}
&(\sin (x))^{\prime}= \\
&(\cos (x))^{\prime}= \\
&\left(e^{x}\right)^{\prime}= \\
&
\end{aligned}
$$

3. Sum, difference, constant multiple rules: If $f(x), g(x)$ are functions and c is a constant (i.e. a number), we have:

$$
\begin{array}{rlrl}
(f(x)+g(x))^{\prime} & = & & \text { (Sum rule), } \\
(f(x)-g(x))^{\prime} & = & \text { (Difference rule), } \\
(c \cdot f(x))^{\prime} & = & \text { (Constant multiple rule). }
\end{array}
$$

Exercise: Find $f^{\prime}(x)$ when

1. $f(x)=2 x^{5}-3 x^{2}+7:$
2. $f(x)=\frac{\sqrt[3]{x^{2}}-4 x^{-1 / 5}}{\sqrt{x}}+2 \sin (x)$:

Exercise: Compute $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=2}$ when $y=\frac{2}{x^{3}}+7 e^{x}+10 e^{2}$.

Exercise: Find the equation of the tangent line to the graph of $f(x)=4+2 \cos (x)$ at $x=\pi / 3$:

