MA 16010 Lesson 9: Product rule

Recal: Computational rules for limits that we know so far are:

1. Constant rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x}[c]=$
2. Power rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{n}\right]=
$$

3. Sum, difference rules: $\frac{d}{\mathrm{~d} x}[f(x) \pm g(x)]=$
4. Derivatives of basic functions:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[\sin (x)]=\quad \frac{\mathrm{d}}{\mathrm{~d} x}[\cos (x)]=\quad \frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x}\right]=
$$

Today we add a new one:
5. Product rule: Given two functions $f(x), g(x)$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) \cdot g(x)]=
$$

Exercise: Compute $f^{\prime}(x)$ when $f(x)=\left(3 x^{2}-4\right)(x+2 \sqrt{x})$.
(a) With the product rule:
(b) Without the product rule:

Exercise: Compute $y^{\prime}(\pi)$ when

$$
y=\frac{\sin (x)}{x^{2}}:
$$

Exercise: Find all x where the graph of the function $f(x)$ has a horizontal tangent line, where

$$
f(x)=\left(x^{2}-2 x\right) e^{x}
$$

Exercise: Find the equation of the tangent line to $y=3 x \sin (x)$ at $x=\pi / 2$.

Exercise: Compute $f^{\prime}(x)$ when
(a) $f(x)=e^{2 x}$:
(b) $f(x)=\sin (2 x)$:

EXTRAS (not needed for homework or class; purely for anyone's interest)

1. Justify the product rule by continuing the limit computation (you may assume that $f(x), g(x)$ are continuous):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} & {[f(x) \cdot g(x)]=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}=} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h}= \\
& =\cdots
\end{aligned}
$$

2. Deduce the quotient rule: using that $g(x) \cdot \frac{f(x)}{g(x)}=f(x)$ and the product rule, deduce the formula for $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{f(x)}{g(x)}\right]$.
