## MA 16020 Lesson 12: Volume of solids of revolution I

## A solid of revolution is:

Goal for today: Compute the volume of solids of revolution via a disk method.

## The disk method (for rotating about the $x$-axis).

Idea: Approximate the volume of the solid by thin disks:

Volume of one disk $=$

Volume of the solid $\approx$

As $\Delta x$ gets smaller and smaller, the approximation gets better and better.
In the limit of this process, $\Delta x$ becomes $\mathrm{d} x$ and $\sum$ becomes $\int$. So we obtain:

Exercise 1. Compute the volume of the solid obtained by rotating the region enclosed by the curve $y=3 x-x^{2}$ and the $x$-axis about the $x$-axis.

Exercise 2. Compute the volume of the solid obtained by rotating the region enclosed by the lines $x+y=5, y=0$ and $x=0$ about the $x$-axis.

Exercise 3. Compute the volume of the solid obtained by rotating the region enclosed by the curves $y=\sec (x), y=0, x=\pi / 6$ and $x=\pi / 3$ about the $x$-axis.

Exercise 4. Compute the volume of the solid obtained by rotating the region enclosed by the curves $y=\frac{1}{3} \sqrt{4-x^{2}}, y=0$ and $x=0$ about the $y$-axis.

