## MA 16020 Lesson 13: Volume of solids of revolution II

Last time: Computing volumes of solids of revolution using the disk method.

When can the method be applied?

Goal for today: Compute volumes of more general solids of revolution via a washer method.

Example: Compute the volume of the solid obtained by rotating the region enclosed by the curves $y=x^{2}$ and $y=3 x$ about the $x$-axis.

The disk method is not applicable.
Idea: Instead of thin disks, we consider thin "washers":

The washer method (for rotating about the $x$-axis).
Given a region between $y=f(x)$ and $y=g(x), f>g$, over the interval $[a, b]$, the volume is computed as

Exercise 1. Compute the volume of the solid obtained by rotating the region enclosed by the curves $y=3 x^{2}, x=2$ and $y=0$ about the $y$-axis.

Exercise 2. Compute the volume of the solid obtained by rotating the region inside $x^{2}+y^{2}=36$ and to the right of the line $x=3$ about the $y$-axis.

Exercise 3. Compute the volume of the solid obtained by rotating the region enclosed by the curves $3 y=x^{3}, x=0$ and $y=9$
(a) about the $x$-axis:
(b) about the $y$-axis:

Exercise 4. Compute the volume of the solid obtained by rotating the region enclosed by the lines $y=4 x, x=1, x=3$ and $y=0$, about the $y$-axis.

