MA 16020 Lesson 14: Volume of solids of revolution III

Recall: Computing volumes of solids of revolution using **the disk method**:

the washer method:

So far we have considered only rotations with respect to the x- or y-axis. Today we consider more general axes. **Exercise 1.** Compute the volume of the solid obtained by rotating the region enclosed by the curves y = 3/x, x = 2, x = 5 and y = 0 about the line y = 2.

Exercise 2. Compute the volume of the solid obtained by rotating the region enclosed by the curves $y = x^2$ and $y = 6x - 2x^2$ about the line y = 5.

Exercise 3. Compute the volume of the solid obtained by rotating the region enclosed by the curves $xy^2 = 144$, x = 4 and y = 3 (a) about the x-axis:

(b) about the line y = 3:

Exercise 3 (cont.). Compute the volume of the solid obtained by rotating the region enclosed by the curves $xy^2 = 144$, x = 4 and y = 3 (c) about the *y*-axis:

(d) about the line x = -1:

Exercise 4 (time permitting). The shape of a propane tank is obtained by revolving the interior of $4x^2 + y^2 = 100$ about the *y*-axis. What is the depth of propane in the tank when it is filled to 1/3 of its capacity?