Series. A (number) series is:

Example:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \\
& \sum_{n=1}^{\infty} \frac{3}{n^{2}} \\
& \sum_{n=0}^{\infty}(n+2)
\end{aligned}
$$

A partial sum of a series is:

Example: For the series

$$
\sum_{n=0}^{\infty} \frac{3}{n^{2}+n+2}
$$

the first partial sum is $\quad S_{0}=$ the second partial sum is $S_{1}=$ the third partial sum is $S_{2}=$

The sum of a series is:

A series is called convergent if A series is called divergent if

A geometric series is:

Finding the sum of a geometric series:

The above works when the geometric series is convergent, which happens if and only if \qquad .
If \qquad , the geometric series is divergent.

Example. Decide whether the series

$$
\sum_{n=0}^{\infty} \frac{5 \cdot 4^{n+1}}{7^{n}}
$$

is geometric and convergent, and if it is, find its sum.

Exercise 1. Write

$$
4-\frac{8}{3}+\frac{16}{9}-\frac{32}{27}+\ldots
$$

in a compact form.

Exercise 2. Write the number

$$
17 . \overline{17}=17.1717171717 \ldots
$$

in the form of a series.

Exercise 3. Compute

$$
\sum_{n=0}^{\infty}\left(\frac{3}{4^{n}}-\frac{6}{5^{n}}\right)
$$

Exercise 4. Approximate the sum

$$
\sum_{n=0}^{\infty} \frac{e^{-2 n}}{4}
$$

to 4 decimal places.

