MA 16020 Lesson 19: Partial derivatives

For a function $z=f(x, y)$ of two variables, we have two ways to take derivatives:

The (first) partial derivative $\frac{\partial f}{\partial x}$ (or $\frac{\partial z}{\partial x}, f_{x}$) describes the rate of change of z as ___ changes and \qquad remains constant. It is computed as a derivative of f as a function of \qquad where we treat the variable \qquad as a constant.
The (first) partial derivative $\frac{\partial f}{\partial y}$ (or $\frac{\partial z}{\partial y}, f_{y}$) describes the rate of change of z as ___ changes and ___ remains constant. It is computed as a derivative of f as a function of \qquad where we treat the variable \qquad as a constant.

Example: Compute the first partial derivatives of the function

$$
f(x, y)=x^{2}+x y+5 \ln (y)
$$

Recall: The graph of a function of one variable $f(x)$ at a given x_{0} has a tangent line, whose slope is dictated by \qquad .

The graph of a function of two variables $f(x, y)$ at a given $\left(x_{0}, y_{0}\right)$ has a tangent \qquad .

It can be determined by the partial derivatives:
$\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=$
$\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=$

Exercise 1. Compute $f_{x} \cdot f_{y}$ when

$$
f(x, y)=\frac{3 x y}{\sqrt{x y-1}}
$$

Exercise 2. Compute $f_{x}(1,3)$ when

$$
f(x, y)=\frac{\ln (3 x y+3)}{x+y}
$$

Exercise 3. The pressure (in Pa) of certain gas in a container is decribed by the equation

$$
P=50 \frac{T}{V}
$$

where T is the temperature of the gas (in ${ }^{\circ} K$) and V is the volume of the container (in m^{3}). If the temperature of the gas is $320^{\circ} \mathrm{K}$ and the gas is kept in a container of volume $5 \mathrm{~m}^{3}$, find the rate of change of the pressure both with respect to the change of temperature and with respect to the change of volume.

Exercise 4. A company makes products A and B. If it produces x units of product A and y units of product B, the expected revenue is

$$
R(x, y)=5 x+10 y+3 x y
$$

If the company makes 15 units of product A and 10 units of product B, find the marginal profits (=rates of change with respect to change of production of product A and product B, resp.)

