MA 16020 Lesson 20: Higher partial derivatives
When $z=f(x, y)$ is a function of two variables, so are the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$. Upon taking partial derivatives of these two functions, we obtain four second-order partial derivatives of f :

Fact: While this is not true in full generality, for all functions we encounter, we have

$$
f_{x y}=f_{y x}
$$

Exercise 1. Compute all the second-order partial derivatives for

$$
f(x, y)=y^{3} x e^{x y}
$$

Exercise 2. Compute $f_{u u}$ and $f_{u v}$ for

$$
f(u, v)=\sqrt{u^{2}+v^{4}+2} .
$$

Exercise 3. Compute $f_{y y}(1,2)$ when

$$
f(x, y)=\ln \left(2 x^{3}+3 x y+y\right) .
$$

Exercise 4. Compute $f_{x y}(1,3)$ when

$$
f(x, y)=3 y^{2} \ln (x)+\frac{\sqrt{e^{3 x}+\ln \left(x^{3}+2\right)}}{5 \sqrt[3]{\sin ^{2}(x-4)+1}}+2 y x^{3} .
$$

Exercise 5. Compute all the second-order partial derivatives of

$$
f(u, v)=\cos (3 u) \sin (4 u v) .
$$

