MA 16020 Lesson 22: Chain rule for multivariate functions
When $z=f(x, y)$ is a function of x and y, and $x=g(t), y=h(t)$ are further functions of a common variable t, the overall function $z=f(g(t), h(t))$ is a function of one variable. While its derivative $\mathrm{d} z / \mathrm{d} t$ can be computed directly, it is often benefitial to use the chain rule for functions of two variables:

Example: If $z=x / y, x=\ln (t), y=t^{3}+t^{2}+1$, we may compute $\mathrm{d} z / \mathrm{d} t$
(a) using the chain rule:
(b) directly:

Let us verify that the result is the same:

Exercise 1. Compute $\frac{\mathrm{d} z}{\mathrm{~d} t}$ when $z=3 x^{2} y^{3}, x=\sin (3 t+1)$ and $y=e^{2 t}-2$

Exercise 2. Evaluate $\frac{\mathrm{d} z}{\mathrm{~d} t}$ at $t=2$ when $z=\sin (x y), x=\frac{\pi t^{2}}{4}$ and $y=\frac{t}{4}$.

Exercise 3. The number of units of a certain product sold per month is given by the function

$$
S(x, y)=3 y^{2}+2 y x+x
$$

where x is the amount spent on advertising per month (in thousands of dollars) and y is the amount spent on distribution per month (in thousands of dollars). Given that t months from now, the monthly amount spent on advertising is $15+t$ thousands of dollars and the monthly amount spent on distribution is $t^{2}+t+3$ thousands of dollars, find the rate of change of the number of units sold per month 4 months from now.

Exercise 4. The radius of the base of a cylinder is decreasing at the rate $3 \mathrm{~mm} / \mathrm{s}$ while its height is increasing at the rate $7 \mathrm{~mm} / \mathrm{s}$. What is the rate of change of the volume of the cylinder at the moment when the radius is 40 mm and the height is 85 mm ?

