MA 16020 Lesson 23: Extrema of functions of two variables I

Recall (derivative tests for local max, min of a function):

Let $y=f(x)$ be a function of one variable.

1. Its local maxima and minima are among the points x_{0} which satisfy (first derivative test).
2. Given such a point x_{0}, to determine whether x_{0} is a point of local maximum or minimum, we look at \qquad :

If \qquad , then x_{0} is a local minimum of f.

If \qquad , then x_{0} is a local maximum of f.

If \qquad , then the test is inconclusive for this x_{0}. (second derivative test).
local min.
local max.
neither

Maxima and minima in two variables:

If $z=f(x, y)$ is a function of two variables, the folowing extrema may occur:
local min. local max. neither - saddle pt. neither - "other"

We see that in all the cases of extrema, the tangent plane to the graph is , which can be described in terms of first partial derivatives as:
(first derivative test)
To determine what type of extreme (if any) is taking place, we use an analogous second derivative test. To perform it, we compute the discriminant at the given critical point:
$D=D\left(x_{0}, y_{0}\right)=$

If \qquad , then $\left(x_{0}, y_{0}\right)$ is a local minimum of f.
If \qquad , then $\left(x_{0}, y_{0}\right)$ is a local maximum of f.
If \qquad , then $\left(x_{0}, y_{0}\right)$ is a saddle point of f.

If \qquad , then the test is inconclusive for this $\left(x_{0}, y_{0}\right)$.

Summary (Finding extrema of functions of two variables).

1. Find all the critical points: Points (x, y) satisfying:
2. Compute all the second-order partial derivatives of f and $D=$
3. For a given critical point $\left(x_{0}, y_{0}\right)$, evaluate D and $f_{x x}$ at $\left(x_{0}, y_{0}\right)$. If __, then $\left(x_{0}, y_{0}\right)$ is a local minimum of f.

If \qquad , then $\left(x_{0}, y_{0}\right)$ is a local maximum of f.

If \qquad , then $\left(x_{0}, y_{0}\right)$ is a saddle point of f.

If \qquad , then the test is inconclusive for this $\left(x_{0}, y_{0}\right)$.

Exercise 1. Find all the local maxima, minima and saddle points of the function

$$
f(x, y)=x^{3}-\frac{2}{3} y^{3}-2 y^{2}-36 x+6 y .
$$

Exercise 2. Find all the local maxima, minima and saddle points of the function

$$
f(x, y)=\frac{2}{3} y^{3}+x^{2}-4 y x-10 y+6 .
$$

Exercise 3. Find all the local maxima, minima and saddle points of the function

$$
f(x, y)=\frac{3}{2} x^{4}-y x^{2}+20 x^{2}+\frac{1}{2} y^{2}-3 .
$$

