MA 16020 Lesson 24: Extrema of functions of two variables II

Recall (extrema of a function of two variables):

To find local extrema of a function $z=f(x, y)$ of two varables, we need to

1. Find all the critical points: Points (x, y) satisfying:
2. Compute all the second-order partial derivatives of f and $D=$
3. For a given critical point $\left(x_{0}, y_{0}\right)$, evaluate D and $f_{x x}$ at $\left(x_{0}, y_{0}\right)$. If _ , then $\left(x_{0}, y_{0}\right)$ is a local minimum of f.
\qquad , then $\left(x_{0}, y_{0}\right)$ is a local maximum of f.

If \qquad , then $\left(x_{0}, y_{0}\right)$ is a saddle point of f.

If \qquad , then the test is inconclusive for this $\left(x_{0}, y_{0}\right)$.

Exercise 1. Find all the critical points of the function

$$
f(x, y)=x^{2} y-2 x^{2}-3 y^{2}+3 y-7 .
$$

Exercise 2. A shop provides two brands of shoes. The acquiring cost is 5 dollars per pair for the first brand and 4 dollars per pair for the second brand. If the selling prices are x dollars per pair of shoes of the first brand and y dollars per pair of shoes of the second brand, it is expected that the customers will buy approximately and $75+y-2 x$ pairs of shoes of the first brand and $50+x-2 y$ pairs of shoes of the second brand. Find the optimal selling prices and maximal profit.

Exercise 3. A rectangular box of volume $3 \mathrm{~m}^{3}$ is to be made. The cost of material is: 25 dollars per m^{3} for the bottom, 15 dollars per m^{3} for the sides, and 20 dollars per m^{3} for the top. Find the dimensions of the box so that the cost is minimal, and the cost of the box.

Exercise 3. If a certain strain of bacteria is fed by x grams of nutrient A, y grams of nutrient B and z grams of nutrient C , it will ultimately produce $x^{3} y^{3} z$ grams of a desired chemical. The cost of the nutrients are: 15 dollars per gram for nutrient $\mathrm{A}, 5$ dollars per gram of nutrient B and 2 dollars per gram of nutrient C. What is the minimal cost to produce 500 grams of the desired chemical?

