MA 16020 Lesson 26: Lagrange multipliers II

Recall (constrained min/max using Lagrange multipliers):

When trying to minimize/maximize the value of the function $z=f(x, y)$ subject to the constraint $g(x, y)=C$, the critical points are given as points (x, y) that are solutions to the system of the equations:
as well as the original constraint:
typical strategy to solve the system (not always):

Exercise 1. The prices for constructing a box with a sqaure base are: $\$ 15$ per m^{3} for the top, $\$ 12$ per m^{3} for the bottom, and $\$ 6$ per m^{3} for the sides. What is the biggest possible volume of the box for $\$ 100$?

Exercise 2. Given that a company spends x thousands of dollars on internet advertising and y thousands of dollars on other forms of advertising, it is expected to sell

$$
S(x . y)=15000+100 x^{1.5} y^{0.5}
$$

units of their product. How should the company distribute its advertising budget of $\$ 200000$ to achieve maximum sales?

Exercise 3. In a certain region, the population of rabbits R (in hundreds of specimens) and the population of foxes F (in hundreds of specimens) satisfy the equation

$$
2(R-15)^{2}+6(F-10)^{2}=144
$$

What is the maximal and minimal possible combined number of rabbits and foxes living in the region?

Exercise 4. If a certain strain of bacteria is fed by x grams of nutrient A, y grams of nutrient B, it will ultimately produce $x^{0.6} y^{0.4}$ grams of a desired chemical. The cost of the nutrients are: 15 dollars per gram for nutrient A and 11 dollars per gram of nutrient B . What is the minimal cost to produce 50 grams of the desired chemical?

