MA 16020 Lesson 28: Double integrals II

Recall (integrals over rectangles): Given a function $z=f(x, y)$ of two variables, the double integrals

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} x \mathrm{~d} y, \quad \int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

both compute the volume of the region below $z=f(x, y)$ and above the rectangle:

$$
R=
$$

Let us denote this common integral by $\iint_{R} f(x, y) \mathrm{d} A$.
Integrals over regions in a plane. Given a (reasonably complicated/simple) region R in the $x y$-plane, the integral $\iint_{R} f(x, y) \mathrm{d} A$ still makes sense. To compute it, we may consider two basic ways of going through all of the points of the region:

Example. Let R be the the interior of the ellipse $4 x^{2}+y^{2}=4$. We want to compute $\iint_{R}\left(\sqrt{4-y^{2}}+2 x\right) \mathrm{d} A$.

1. First way: Give lower and upper limits for the x-coordinates of points present, then give lower and upper limits (posssibly depending on x) for the corresponding y-coordinates.

This way, we obtain

$$
\iint_{R}\left(\sqrt{4-y^{2}}+2 x\right) \mathrm{d} A=
$$

2. Second way (the other way round): Give lower and upper limits for the y-coordinates of points present, then give lower and upper limits (posssibly depending on y) for the corresponding x-coordinates.

This way, we obtain

$$
\iint_{R}\left(\sqrt{4-y^{2}}+2 x\right) \mathrm{d} A=
$$

Finally, let us compute the integral:

Exercise 1. Evaluate the integral $\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} A$, where R is the region bounded by the lines $y=2 x, x=5$ and the x-axis.

Exercise 2. Switch the order of integration for the integral

$$
\int_{0}^{3} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Exercise 3. Evaluate the integral

$$
\iint_{R} 6 \sin ^{2}(x) \mathrm{d} A
$$

where R is the region bouded by the curves $y=\cos (x), x=\pi / 6, x=\pi / 2$ and the x-axis.

Exercise 4 (time permitting). Evaluate the integral

$$
\int_{0}^{2} \int_{x^{2}}^{4} 2 x \sqrt{3-y^{2}} \mathrm{~d} y \mathrm{~d} x
$$

