MA 16020 Lesson 29: Double integrals III

Recall (geom. interpretation of double integrals):

Given a function $z=f(x, y)$ of two variables and a region R in the $x y$ plane, the integral $\iint_{R} f(x, y) \mathrm{d} A$ has the meaning of:

Exercise 1. Compute the volume of the solid bounded by the surface $z=e^{x} \sqrt{y^{3}+e^{x}}$ from above, by the $x y$-plane from below and by the planes $x=-1, x=2, y=0$ and $y=2$ on the sides.

Exercise 2. Compute the volume under the surface $z=x^{2} y$ and above the triangle with vertices $(1,1,0),(1,5,0)$ and $(4,1,0)$.

Exercise 3. There is a heater in a corner of a rectangular room of dimensions $8 \times 10 \mathrm{~m}$. As a result, the temperature in ${ }^{\circ} \mathrm{C}$ in the room is described by

$$
T(x, y)=60-0.3\left(x^{2}+y^{2}\right),
$$

where (x, y) are the coordinates of a given point in the room (the heater is placed at $(0,0))$. What is the average temperature in the room?

Exercise 4. The water temperature in a lake during the night is given approximately (in ${ }^{\circ} F$) by the function

$$
T(d, t)=\frac{350 e^{-0.05 t}}{d+5}
$$

where t is the number of hours that passed since 8 pm and d is the depth in m . What is the average temperature of the water from the surface to the depth of 5 m and between 10 pm and 1 am ?

