MATH 16020 Lesson 2: Integration by Substitution III

Spring 2021

Example 1. Suppose the height of an alien plant increases at the rate:

$$
H^{\prime}(t)=\frac{1}{\sqrt{t} \sqrt[3]{(1+\sqrt{t})}} \mathrm{cm} / \text { hour }
$$

for t in hours since 6:00 AM. How tall does the plant grow from 7:00AM to 3:00PM? Round answer to 3 decimal places.

Example 2. Suppose now this plant grows at the rate:

$$
H^{\prime}(t)=\frac{1}{\sqrt{t} \sqrt[3]{(1+\sqrt{t})}} \mathrm{cm} / \text { hour }
$$

t hours after it was planted. How tall does the plant grow during the third hour? Round answer to 3 decimal places.

Example 3. Suppose as a particle slows down, its velocity is:

$$
v(t)=2 e^{1-t}-1 \mathrm{~cm} / \mathrm{s}
$$

If the particle starts slowing down at time $t=0$ seconds, find the distance it takes for the particle to stop.

Definition. For $f(x)$ defined on $[a, b]$, the average value of $f(x)$ on $[a, b]$ is:

Example 4. Find the average value of $f(x)=6 x^{2}+2$ over $[1,3]$.

Example 5. Suppose another alien plant is shrinking at the rate of:

$$
H^{\prime}(t)=-100 e^{-5 t} \mathrm{~cm} / \mathrm{min}
$$

If the plant has an initial recorded height of 300 cm , find the average height of the plant 4 minutes after this initial recording. Round answer to 3 decimal places.

