MA 16020 Lesson 30: Systems of linear equations

A linear equation in two (three) variables is an equation of the form:

We will typically consider systems of linear equations.
Example. Find a solution (x, y, z) to the system of linear equations

$$
\begin{aligned}
3 x+2 y+3 z & =7 \\
4 x-3 y-z & =-2 \\
x+y+z & =3
\end{aligned}
$$

Solution 1 ("standard"; sketch):

Solution 2 ("elimination method"):

We classify a system of linear equations based on its solutions as follows:
(A) Consistent independent:

Example:
(B) Consistent dependent:

Example:

(C) Inonsistent:

Example:

Example. Solve the system of linear equations

$$
\begin{array}{r}
4 x+4 y+2 z=2 \\
3 x-2 y+z=0 \\
x+4 y+z=1 .
\end{array}
$$

To make the work with the equation more efficient, we record all the relevant coefficients in the augmented matrix for the system:

The relevant operations for the elimination method become the following row operations on the matrix:

Using the row operations, we perform Gaussian elimination: the goal is to obtain a matrix of the form(s) (called row echelon form):

Let us now solve the problem using Gaussian elimination:

Exercise (if time permits). The dog nutrition from brand A contains 15 g of protein and 210 g of carbohydrates per can, while the food from brand B contains 20 g of protein and 150 g of carbohydrates per can. If the ideal meal consists of 15 g of protein and 145 g of carbohydrates, how many cans of each brand should be used?

