MA 16020 Lesson 31: Gauss-Jordan elimination

Recall (Gaussian elimination): Given a system of linear equations, such as

$$
\begin{aligned}
3 x+2 y & =1, \\
x+y & =1,
\end{aligned}
$$

we write down its associated augmented matrix:

Then we use the following types of row operations to obtain a matrix in the row echelon form:

Finally, we rewrite the matrix back as equations to determine the solution:

Gauss-Jordan elimination. Instead of the last step, we could have continued with one more row operation, to get a matrix in the reduced row echelon form:
reduced row echelon form $=$

Upshot: The solution to the system can be read off easily from the matrix:

Summary (Gauss-Jordan elimination):

Exercise 1. Find all solutions to the following system of equations:

$$
\begin{array}{r}
2 x+5 y+4 z=3, \\
2 x+6 y+6 z=2, \\
3 x+10 y+11 z=2 .
\end{array}
$$

Exercise 2. Find the reduced row echelon form of the following augmented matrix:

$$
\left[\begin{array}{ccc|c}
6 & 11 & 2 & 2 \\
3 & 7 & 1 & -2 \\
3 & 9 & 0 & -3
\end{array}\right]
$$

Exercise 3. Find all solutions to the following system of equations:

$$
\begin{aligned}
2 x+2 y+2 z & =5 \\
3 x+y+5 z & =13, \\
x+2 z & =4 .
\end{aligned}
$$

