MA 16020 Lesson 32: Matrix operations

Matrices. An $m \times n$ matrix is:

Examples:

Just as with numbers, there are certain operations for matrices:
Matrix addition (and subtraction). We can add and subtract matrices as long as the dimensions of the matrices agree.
The addition/subtraction is done "component-wise":

Examples:

$\left[\begin{array}{ccc}6 & -3 & 2 \\ -2 & 4 & 1\end{array}\right]+\left[\begin{array}{ccc}2 & 1 & 0 \\ 4 & -5 & 7\end{array}\right]=$
$\left[\begin{array}{cc}1 & 8 \\ -3 & 4\end{array}\right]-\left[\begin{array}{cc}2 & 1 \\ 4 & -5\end{array}\right]=$
$\left[\begin{array}{cc}2 & -10 \\ -5 & 7\end{array}\right]+\left[\begin{array}{ll}5 & 6 \\ 1 & 0 \\ 3 & 2\end{array}\right]=$
$\left[\begin{array}{ccc}1 & 0 & 4 \\ 7 & -3 & 0\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=$
Properties of matrix addition. If A, B, C are three $m \times n$ matrices and 0 denotes the $m \times n$ matrix consisting of all zeroes, then:

1. (associativity)
2. (commutativity)
3. (neutral element)
4. ("opposite element")

Scalar multiplication of matrices. We can multiply a matrix of arbitrary dimensions by a number ("scalar"). This is done "component-wise":

Examples:

$3\left[\begin{array}{ccc}5 & -3 & 1 \\ 2 & 4 & 9\end{array}\right]=$
$(-1)\left[\begin{array}{cc}1 & 1 \\ -3 & -2\end{array}\right]=$
$1\left[\begin{array}{cc}0 & 5 \\ -2 & -3 \\ 0 & 4\end{array}\right]=$
Properties of scalar multiplication. If A, B are two $m \times n$ matrices and c, d two numbers, then:

1. (associativity)
2. (distributivity)
3. (unit element)

Examples:

$2\left[\begin{array}{ccc}1 & -5 & 3 \\ 7 & 1 & 4\end{array}\right]-3\left[\begin{array}{ccc}2 & 0 & 3 \\ 1 & 1 & -4\end{array}\right]=$
$2\left[\begin{array}{lll}1 & 0 & 2 \\ 4 & 1 & 0 \\ 3 & 2 & 0\end{array}\right]+3\left[\begin{array}{ccc}0 & 0 & 1 \\ 5 & 1 & -2 \\ 1 & 1 & 1\end{array}\right]=$
$5\left[\begin{array}{ccc}2 & 0 & 7 \\ -4 & 3 & 2 \\ 1 & 5 & -2\end{array}\right]+4\left[\begin{array}{cc}-3 & 4 \\ 2 & -1\end{array}\right]=$

Matrix multiplication. If A is an $m \times n$ matrix and B is an $n \times k$ matrix (so number of columns of $A=$ number of rows of B), we define the matrix product $A B$. It is an $m \times k$ matrix, whose
entry on position $(i, j)=$

Examples:

$$
\left[\begin{array}{lll}
2 & -1 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
5 \\
-2
\end{array}\right]=
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=
$$

$$
\left[\begin{array}{ll}
1 & -2 \\
0 & -3
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & -1 \\
3 & 5
\end{array}\right]=
$$

$$
\left[\begin{array}{cc}
2 & -1 \\
3 & 5
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & -2 \\
0 & -3
\end{array}\right]=
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & -2 \\
0 & -3
\end{array}\right]=
$$

Properties of matrix multiplication. If A, B, C are matrices of suitable dimensions (i.e. so that the discussed operations are defined), and d a real number, then:

1. (associativity)
2. (distributivity)
3. (unit element)
4. (mult. by scalars)

!! We do not have commutativity:

Exercise. The number of grams of protein and carbohydrates per can of pet food is given by the following table:

Protein Carb.

Brand A $15 \quad 150$
Brand B 13140
Brand C 14180
If we mix a meal using one can of brand A , two cans of brand B and a half can of brand C , what will be the overall amount of protein and carohydrates, respectively?

