MA 16020 Lesson 34: Determinants

The determinant of a square matrix A is a certain number assigned to the matrix, $\operatorname{det}(A)$.
Important properties:

1) (multiplicativity)
2) (det of unit matrix)
3) (det and invertibility)

Determinant of a 1×1 matrix is "itself":
Determinant of a 2×2 matrix is computed as follows:

Examples:

$\left|\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right|=$
$\left|\begin{array}{cc}-3 & -4 \\ 2 & 3\end{array}\right|=$
$\left|\begin{array}{cc}1 & 4 \\ -2 & -8\end{array}\right|=$

Determinants of 3×3 matrices:

(A) directly:

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=
$$

Example:

$$
\left|\begin{array}{ccc}
1 & 3 & 2 \\
4 & -2 & -1 \\
6 & 3 & 2
\end{array}\right|=
$$

(B) using cofactors (also works for $n \times n$ matrix, for any n):

For a given square matrix A, its minor $M_{i j}$ is:
and its cofactor $C_{i j}$ is:
Example: For the matrix $\left[\begin{array}{ccc}3 & 1 & 0 \\ -2 & 1 & 5 \\ 4 & 7 & -3\end{array}\right]$, one has:
the minor $M_{12}=$
the cofactor $C_{12}=$

Using cofactors, the determinant of A is given as:

Example: Compute the determinant of the matrix $\left[\begin{array}{ccc}3 & 1 & 0 \\ -2 & 1 & 5 \\ 4 & 7 & -3\end{array}\right]$ by cofactor expansion with respect to the first row.

Inverse matrix via cofactors. The cofactor matrix $C(A)$ is a matrix that has on position (i, j) the cofactor $C_{i j}$.
The adjugate matrix $\operatorname{Adj}(A)$ is the "cofactor matrix transposed": on position (i, j), it has the cofactor $C_{j i}$.

If the matrix A is invertible, its inverse can be then computed by the formula:

$$
A^{-1}=
$$

A particular case: 2×2 matrices. Given an invertible matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, its inverse matrix can be found as follows:

Example: If it exists, find the inverse of the matrix $\left[\begin{array}{cc}4 & -3 \\ 1 & 2\end{array}\right]$.

