MA 16020 Lesson 34: Determinants

The **determinant** of a square matrix A is a certain number assigned to the matrix, det(A).

Important properties:

- 1) (multiplicativity)
- 2) (det of unit matrix)
- 3) (det and invertibility)

Determinant of a 1×1 **matrix** is "itself":

Determinant of a 2×2 **matrix** is computed as follows:

Examples:

Determinants of 3×3 matrices: (A) directly:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} =$$

Example:

$$\begin{vmatrix} 1 & 3 & 2 \\ 4 & -2 & -1 \\ 6 & 3 & 2 \end{vmatrix} =$$

(B) using cofactors (also works for $n \times n$ matrix, for any n): For a given square matrix A, its minor M_{ij} is:

and its **cofactor** C_{ij} is:

Example: For the matrix $\begin{bmatrix} 3 & 1 & 0 \\ -2 & 1 & 5 \\ 4 & 7 & -3 \end{bmatrix}$, one has:

the minor $M_{12} =$

the cofactor $C_{12} =$

Using cofactors, the determinant of A is given as:

Example: Compute the determinant of the matrix $\begin{bmatrix} 3 & 1 & 0 \\ -2 & 1 & 5 \\ 4 & 7 & -3 \end{bmatrix}$ by co-factor expansion with respect to the first row.

Inverse matrix via cofactors. The cofactor matrix C(A) is a matrix that has on position (i, j) the cofactor C_{ij} .

The adjugate matrix $\operatorname{Adj}(A)$ is the "cofactor matrix transposed": on position (i, j), it has the cofactor C_{ji} .

If the matrix A is invertible, its inverse can be then computed by the formula:

 $A^{-1} =$

A particular case: 2×2 matrices. Given an invertible matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, its inverse matrix can be found as follows:

Example: If it exists, find the inverse of the matrix $\begin{bmatrix} 4 & -3 \\ 1 & 2 \end{bmatrix}$.