## MA 16020 Lesson 35: Eigenvalues and eigenvectors I

The eigenvector of a square $(n \times n)$ matrix $A$ is a 1 -column matrix (i.e. vector) $v \neq 0$ such that:

In such case, we call $\lambda$ the eigenvalue of $A$.
Example: Let us check whether the vector $\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$ is an eigenvector for the matrix $\left[\begin{array}{ccc}1 & -1 & 3 \\ -1 & 2 & 3 \\ 2 & 4 & -4\end{array}\right]$, and if yes, find the eigenvalue.

How to find an eigenvalue. To find eigenvectors of a matrix, it is practical to find the possible eigenvalues $\lambda$ first.

Example: Find all the eigenvalues of the matrix $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
Suppose that the eigenvalue is $\lambda$ and the eigenvector is $\left[\begin{array}{l}x \\ y\end{array}\right]$. Then we have:

We are looking for $\lambda$ 's such that the equation above has nonzero solution $\left[\begin{array}{l}x \\ y\end{array}\right]$. This means that:

To check this, we employ the determinant:

Exercise. Find all the eigenvalues of the matrix $\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$.

How to find the eigenvectors. Finally, let us continue the original example (matrix $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$ ) to find eigenvectors to the found eigenvalues:

## Finding eigenvalues and eigenvectors - summary.

1. Set up the characteristic equation:
2. Eigenvalues of $A$ are then obtained as:
3. For each eigenvalue $\lambda$, the corresponding eigenvectors are obtained as:

Example: Find the eigenvalues and eigenvectors for the matrix $\left[\begin{array}{ll}1 & 5 \\ 1 & 3\end{array}\right]$.

Example: Find the eigenvalues and eigenvectors for the matrix $\left[\begin{array}{ll}7 & -4 \\ 4 & -1\end{array}\right]$.

