## MA 16020 Lesson 36: Eigenvalues and eigenvectors II

Recall: The eigenvector of a square $(n \times n)$ matrix $A$ is a vector $v \neq 0$ such that:
for some number $\lambda$, which is then called an eigenvalue of $A$. To find them, we set up and solve the characteristic equation:

Eigenvalues of $A$ are obtained as $\qquad$ . Given an eigenvalue $\lambda$, the corresponding eigenvectors are obtained as:

## Recall: long division of polynomials.

Example: Find all the solutions to the equation

$$
x^{3}-7 x^{2}+12 x-6=0 .
$$

Example: Find the eigenvalues and eigenvectors for the matrix $\left[\begin{array}{ccc}-1 & 0 & -2 \\ -12 & -1 & -12 \\ 4 & 0 & 5\end{array}\right]$

Example: Find the eigenvalues and eigenvectors for the matrix $\left[\begin{array}{ccc}3 & -1 & 4 \\ 2 & 3 & 8 \\ -1 & 0 & -2\end{array}\right]$.

