MA 16020 Lesson 36: Eigenvalues and eigenvectors II

Recall: The **eigenvector** of a square $(n \times n)$ matrix A is a vector $v \neq 0$ such that:

for some number λ , which is then called an **eigenvalue** of A. To find them, we set up and solve the *characteristic equation*:

Eigenvalues of A are obtained as ______. Given an eigenvalue λ , the corresponding eigenvectors are obtained as:

Recall: long division of polynomials.

Example: Find all the solutions to the equation

$$x^3 - 7x^2 + 12x - 6 = 0.$$

	$\int -1$	0	-2
Example: Find the eigenvalues and eigenvectors for the matrix	-12	-1	-12
	4	0	5

•

	3	-1	4]	
Example: Find the eigenvalues and eigenvectors for the matrix	2	3	8	
	$\lfloor -1 \rfloor$	0	-2	