Ramification bounds for mod *p* étale cohomology via prismatic cohomology

Pavel Čoupek Purdue University

Upstate Number Theory Conference

Oct 24 2021

preprint available at https://arxiv.org/abs/2108.03833

Theorem (Fontaine '85)

There is no non-trivial abelian scheme over \mathbb{Z} . Equivalently, there is no non-zero abelian variety over \mathbb{Q} with good reduction everywhere.

To prove this: let

- K/\mathbb{Q}_p be a finite extension,
- ▶ $e = e(K/\mathbb{Q}_p)$ be the abs. ramification index,
- G_K^{μ} , $\mu \ge -1$ be the upper–index higher ramification subgroups of $G_K = \text{Gal}(\overline{K}/K)$.

Theorem (Fontaine '85)

Let K/\mathbb{Q}_p be a finite extension. Let Γ be a finite flat commutative group scheme over \mathcal{O}_K that is annihilated by p^n . Then G_K^{μ} acts trivially on $\Gamma(\overline{K})$ when

$$\mu > e\left(n + \frac{1}{p-1}\right) - 1.$$

Conjecture (Fontaine '85)

Given a smooth proper \mathcal{O}_K -scheme X and $T = H^i_{\acute{e}t}(X_{\overline{K}}, \mathbb{Z}/p^n\mathbb{Z}), G^{\mu}_K$ acts trivially on T when

$$\mu > e\left(n + \frac{i}{p-1}\right) - 1.$$

Special cases proved: – by Fontaine ('93) when n = e = 1, i ,– by Abrashkin ('90) when <math>e = 1, i

Similar bounds by Hattori ('09), Caruso–Liu ('11):

- p^n -torsion quotients of lattices in semistable \mathbb{Q}_p -representations - applies to $H^i_{\text{\acute{e}t}}(X_{\overline{k}}, \mathbb{Z}/p\mathbb{Z})$ when *X* has semistable reduction and ie

Main result

Let $\blacktriangleright \mathfrak{X}$ be a smooth and proper formal \mathcal{O}_K -scheme,

$$\blacktriangleright \ \mathbb{C}_K = \widehat{\overline{K}},$$

▶
$$T = H^i_{\text{ét}}(\mathfrak{X}_{\mathbb{C}_K}, \mathbb{Z}/p\mathbb{Z})$$
, viewed as a representation of G_K .

Theorem (Č.) Set $\alpha = \left\lfloor \log_p \left(\max\left\{ \frac{ip}{p-1}, \frac{(i-1)e}{p-1} \right\} \right) \right\rfloor + 1 \quad and \quad \beta = \frac{1}{p^{\alpha}} \left(\frac{iep}{p-1} - 1 \right).$

Then for every $\mu > e\alpha + \max\{\beta, e/(p-1)\}, G_K^{\mu}$ acts trivially on T.

・ロト・日本・日本・日本・日本・日本

Corollary (non-optimal, but more tractable) G_{K}^{μ} acts trivially on $T = H_{\acute{e}t}^{i}(\mathfrak{X}_{\mathbb{C}_{K}}, \mathbb{Z}/p\mathbb{Z})$ when • $e \leq p$ and $\mu > e\left(\left\lfloor \log_{p}\left(\frac{ip}{p-1}\right) \right\rfloor + 1\right) + e,$ • e > p and $\mu > e\left(\left\lfloor \log_{p}\left(\frac{ie}{p-1}\right) \right\rfloor + 1\right) + p,$ • i = 1 (e, p arbitrary) and $\mu > e\left(1 + \frac{1}{p-1}\right).$

Some comparisons:

- ie or <math>i = 1: agrees with Hattori, Caruso–Liu
- ▶ e = 1 and i : Fontaine, Abrashkin are slightly stronger

▶ Bound of Caruso ('13) a posteriori applies; which bound is stronger depends on *K*

Fontaine's condition (P_m)

► Fix *L*/*K* finite Galois extension.

 $(P_m^{L/K}) \qquad \qquad \text{For every alg. extension } E/K: \\ \exists \ \mathcal{O}_L \to \mathcal{O}_E/\mathfrak{a}_E^{>m} \text{ over } \mathcal{O}_K \ \Rightarrow \ \exists \ L \hookrightarrow E \text{ over } K \end{cases}$

$$\blacktriangleright \text{ here } \mathfrak{a}_E^{>m} = \{ x \in \mathcal{O}_E \mid \nu_K(x) > m \}.$$

Proposition (Fontaine, Yoshida)

$$\inf\{\mu \mid \text{Gal}(L/K)^{\mu-1} = 1\} = \inf\{m \mid (P_m^{L/K}) \text{ holds}\}.$$

"Meta-strategy":

- ▶ To the rep. *T*, attach associated modules (+ extra structure).
- Encode and prove (P_m) in terms of the modules. (L = splitting field of T or variant)

▶ $\mathcal{O}_K \hookrightarrow \mathcal{O}_{\mathbb{C}_K}$ + choice of $\pi \in K$ uniformizer, $\pi_s = \pi^{1/p^s}$, $s \ge 0$ determine

$$\mathfrak{S} = W(k)[[u]] \longrightarrow A_{\inf} = W(\mathcal{O}_{\mathbb{C}_K}^{\flat})$$

 $u \longmapsto [\underline{\pi}], \quad \underline{\pi} = (\pi_s)_s \in \mathcal{O}_{\mathbb{C}_K}^{\flat}$

- ► A Breuil–Kisin (BK) module is a fin.-gen. \mathfrak{S} –module $M_{\rm BK}$ + a semilinear operator $\varphi: M_{\rm BK} \to M_{\rm BK}$ satisfying certain invertibility condition
- ▶ When M_{BK} is a BK module, the module $M_{inf} = M_{BK} \otimes_{\mathfrak{S}} A_{inf}$ is called a **Breuil–Kisin–Fargues (BKF) module**. If M_{inf} has G_K –action, it is a **BKF** G_K –module.

New input: Prismatic cohomology

- ▶ Bhatt–Morrow–Scholze ('16, '18), Bhatt–Scholze ('19)
- \mathfrak{X} a smooth formal \mathcal{O}_K -scheme \rightsquigarrow **Breuil-Kisin (prismatic) cohomology** $\mathrm{R}\Gamma_{\Delta}(\mathfrak{X}/\mathfrak{S})$
 - $H^i_{\Delta}(\mathfrak{X},\mathfrak{S})$ is a BK module when \mathfrak{X} is proper
- ► \mathcal{Y} a smooth formal $\mathcal{O}_{\mathbb{C}_{K}}$ -scheme $\rightsquigarrow A_{inf}$ -(prismatic) cohomology $\mathrm{R}\Gamma_{\Delta}(\mathcal{Y}/A_{inf})$
 - ► $H^{i}_{\Delta}(\mathcal{X}_{\mathcal{O}_{\mathbb{C}_{k}}}, A_{inf})$ is a BKF G_{K} -module when \mathcal{X} is proper
 - $\blacktriangleright H^{i}_{\text{\'et}}(\mathfrak{X}_{\mathbb{C}_{K}},\mathbb{Z}_{p}) = (H^{i}_{\Delta}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_{K}}},A_{\text{inf}}) \otimes_{A_{\text{inf}}} W(\mathbb{C}^{\flat}_{K}))^{\varphi=1} \text{ as } G_{K}\text{-modules}$
- ► p^n -torsion version (Li–Liu '20): $R\Gamma_{\Delta,n}(\mathcal{X}/\mathfrak{S}) = R\Gamma_{\Delta}(\mathcal{X}/\mathfrak{S}) \otimes^{L} \mathbb{Z}/p^n\mathbb{Z}$, same for A_{inf}
 - ► $H^i_{\Delta,n}(\mathfrak{X},\mathfrak{S})$ are BK modules, $H^i_{\Delta,n}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}, A_{inf})$ are BKF G_K -modules when \mathfrak{X} is proper
 - $\blacktriangleright H^i_{\text{\'et}}(\mathfrak{X}_{\mathbb{C}_K}, \mathbb{Z}/p^n\mathbb{Z}) = (H^i_{\Delta, n}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}, A_{\text{inf}}) \otimes_{A_{\text{inf}}} W_n(\mathbb{C}^\flat_K))^{\varphi=1} \text{ as } G_K \text{-modules}$

The conditions (Cr_s)

• Set
$$G_s = \operatorname{Gal}(\overline{K}/K(\pi_s)), \quad G_\infty = \bigcap_s G_s$$

► Fix
$$M_{\mathrm{BK}} = H^{i}_{\Delta,1}(\mathcal{X}/\mathfrak{S}), \quad M_{\mathrm{inf}} = H^{i}_{\Delta,1}(\mathcal{X}_{\mathcal{O}_{\mathbb{C}_{K}}}/A_{\mathrm{inf}}), \text{ and set}$$

$$T^{\mathrm{BK}} = \mathrm{Hom}_{\mathfrak{S},\varphi}(M_{\mathrm{BK}}, \mathcal{O}_{\mathbb{C}_{K}}^{\flat}) \simeq T^{\vee}|_{G_{\infty}}, \quad T^{\mathrm{inf}} = \mathrm{Hom}_{A_{\mathrm{inf}},\varphi}(M_{\mathrm{inf}}, \mathcal{O}_{\mathbb{C}_{K}}^{\flat}) \simeq T^{\vee}.$$

- Idea: Mutate these enough to verify Fontaine's property (P_m)
- Need to relate the G_s -actions on T^{BK} and T^{inf} by a statement of the type

$$orall g \in G_s: (g-1)M_{
m BK} \subseteq \mathfrak{a}^{>c}M_{
m inf}$$

▶ Reminiscent of a crystallinity criterion of Gee–Liu ('19):

(Cr₀)
$$\forall g \in G_K : (g-1)M_{BK} \subseteq ([\underline{\varepsilon}^{1/p}] - 1)[\underline{\pi}]M_{inf}$$

 $\check{C}_{\mathrm{BK}}^{\bullet}, \check{C}_{\mathrm{inf}}^{\bullet} = \check{\mathrm{Cech}} - \mathrm{Alexander\ complexes\ modelling\ } \mathrm{R}\Gamma_{\Delta}(\mathcal{X}/\mathfrak{S}), \mathrm{R}\Gamma_{\Delta}(\mathcal{X}_{\mathcal{O}_{\mathbb{C}_{K}}}/A_{\mathrm{inf}})$ There is a decreasing sequence of ideals $I_{s} \subseteq A_{\mathrm{inf}}, s \ge 0$ such that:

Theorem (Č.) For every *i* and every $s \ge 0$, one has $\check{C}^i_{BK} \widehat{\otimes}_{\mathfrak{S}} A_{inf} = \check{C}^i_{inf}$ and (Cr_s) $\forall g \in G_s : (g-1)\check{C}^i_{BK} \subseteq I_s\check{C}^i_{inf}$.

Consequently,

- (1) For every *i*, the cohomology groups satisfy
 - $(\mathsf{Cr}_0) \qquad \forall g \in G_K: \quad (g-1)H^i_\Delta(\mathfrak{X}/\mathfrak{S}) \subseteq ([\underline{\varepsilon}^{1/p}]-1)[\underline{\pi}]H^i_\Delta(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}/A_{\mathrm{inf}}).$

(2) For every *i* and every pair of integers *s*, *n* with $s + 1 \ge n \ge 1$, one has

$$\forall g \in G_s: \quad (g-1)H^i_{\Delta,n}(\mathfrak{X}/\mathfrak{S}) \subseteq ([\underline{\varepsilon}^{1/p}]-1)[\underline{\pi}]^{p^{s-n+1}}H^i_{\Delta,n}(\mathfrak{X}_{\mathcal{O}_{\mathbb{C}_K}}/A_{\mathrm{inf}}).$$

Thank you!