Ramification bounds for $\bmod p$ étale cohomology via prismatic cohomology

Pavel Čoupek
Purdue University

Upstate Number Theory Conference

Motivation \& Background

Theorem (Fontaine '85)

There is no non-trivial abelian scheme over \mathbb{Z}. Equivalently, there is no non-zero abelian variety over \mathbb{Q} with good reduction everywhere.

To prove this: let

- K / \mathbb{Q}_{p} be a finite extension,
- $e=e\left(K / \mathbb{Q}_{p}\right)$ be the abs. ramification index,
- $G_{K}^{\mu}, \mu \geq-1$ be the upper-index higher ramification subgroups of $G_{K}=\operatorname{Gal}(\bar{K} / K)$.

Theorem (Fontaine '85)

Let K / \mathbb{Q}_{p} be a finite extension. Let Γ be a finite flat commutative group scheme over \mathcal{O}_{K} that is annihilated by p^{n}. Then G_{K}^{μ} acts trivially on $\Gamma(\bar{K})$ when

$$
\mu>e\left(n+\frac{1}{p-1}\right)-1 .
$$

Motivation \& Background

Conjecture (Fontaine '85)
Given a smooth proper \mathcal{O}_{K}-scheme X and $T=H_{e t t}^{i}\left(X_{\bar{K}}, \mathbb{Z} / p^{n} \mathbb{Z}\right), G_{K}^{\mu}$ acts trivially on T when

$$
\mu>e\left(n+\frac{i}{p-1}\right)-1 .
$$

- Special cases proved: - by Fontaine ('93) when $n=e=1, i<p-1$, - by Abrashkin ('90) when $e=1, i<p-1$
- Similar bounds by Hattori ('09), Caruso-Liu ('11):
- p^{n}-torsion quotients of lattices in semistable \mathbb{Q}_{p}-representations
- applies to $H_{\text {êt }}^{i}\left(X_{\bar{K}}, \mathbb{Z} / p \mathbb{Z}\right)$ when X has semistable reduction and ie $<p-1$

Main result

Let

- X be a smooth and proper formal \mathcal{O}_{K}-scheme,
- $\mathbb{C}_{K}=\widehat{\bar{K}}$,
- $T=H_{\text {êt }}^{i}\left(X_{\mathbb{C}_{K}}, \mathbb{Z} / p \mathbb{Z}\right)$, viewed as a representation of G_{K}.

Theorem (Č.)

Set

$$
\alpha=\left\lfloor\log _{p}\left(\max \left\{\frac{i p}{p-1}, \frac{(i-1) e}{p-1}\right\}\right)\right\rfloor+1 \text { and } \beta=\frac{1}{p^{\alpha}}\left(\frac{i e p}{p-1}-1\right)
$$

Then for every $\mu>e \alpha+\max \{\beta, e /(p-1)\}, G_{K}^{\mu}$ acts trivially on T.

Main result

Corollary (non-optimal, but more tractable)
G_{K}^{μ} acts trivially on $T=H_{e t t}^{i}\left(X_{\mathbb{C}_{K}}, \mathbb{Z} / p \mathbb{Z}\right)$ when
$-e \leq p$ and $\mu>e\left(\left\lfloor\log _{p}\left(\frac{i p}{p-1}\right)\right\rfloor+1\right)+e$,
$-e>p$ and $\mu>e\left(\left\lfloor\log _{p}\left(\frac{i e}{p-1}\right)\right\rfloor+1\right)+p$,

- $i=1$ (e, p arbitrary) and $\mu>e\left(1+\frac{1}{p-1}\right)$.

Some comparisons:

- ie $<p-1$ or $i=1$: agrees with Hattori, Caruso-Liu
- $e=1$ and $i<p-1$: Fontaine, Abrashkin are slightly stronger
- Bound of Caruso ('13) a posteriori applies; which bound is stronger depends on K

Fontaine's condition $\left(P_{m}\right)$

- Fix L / K finite Galois extension.
$\left(P_{m}^{L / K}\right)$
For every alg. extension E / K :

$$
\exists \mathcal{O}_{L} \rightarrow \mathcal{O}_{E} / \mathfrak{a}_{E}^{>m} \text { over } \mathcal{O}_{K} \Rightarrow \exists L \hookrightarrow E \text { over } K
$$

- here $\mathfrak{a}_{E}^{>m}=\left\{x \in \mathcal{O}_{E} \mid v_{K}(x)>m\right\}$.

Proposition (Fontaine, Yoshida)

$$
\inf \left\{\mu \mid \operatorname{Gal}(L / K)^{\mu-1}=1\right\}=\inf \left\{m \mid\left(P_{m}^{L / K}\right) \text { holds }\right\}
$$

"Meta-strategy":

- To the rep. T, attach associated modules (+ extra structure).
- Encode and prove $\left(P_{m}\right)$ in terms of the modules. ($L=$ splitting field of T or variant)

Breuil-Kisin(-Fargues) modules

- $\mathcal{O}_{K} \hookrightarrow \mathcal{O}_{\mathbb{C}_{K}}+$ choice of $\pi \in K$ uniformizer, $\pi_{s}=\pi^{1 / p^{s}}, s \geq 0$ determine

$$
\begin{aligned}
\mathfrak{S}=W(k)[[u]] & \longleftrightarrow A_{\mathrm{inf}}=W\left(\mathcal{O}_{\mathbb{C}_{K}}^{b}\right) \\
u & \longmapsto[\underline{\pi}], \quad \underline{\pi}=\left(\pi_{s}\right)_{s} \in \mathcal{O}_{\mathbb{C}_{K}}^{b}
\end{aligned}
$$

- A Breuil-Kisin (BK) module is a fin.-gen. \mathfrak{S}-module $M_{\mathrm{BK}}+$ a semilinear operator $\varphi: M_{\mathrm{BK}} \rightarrow M_{\mathrm{BK}}$ satisfying certain invertibility condition
- When M_{BK} is a BK module, the module $M_{\mathrm{inf}}=M_{\mathrm{BK}} \otimes_{\mathfrak{G}} A_{\mathrm{inf}}$ is called a Breuil-Kisin-Fargues (BKF) module. If $M_{\text {inf }}$ has G_{K}-action, it is a BKF G_{K}-module.

New input: Prismatic cohomology

- Bhatt-Morrow-Scholze ('16, '18), Bhatt-Scholze ('19)
- X a smooth formal \mathcal{O}_{K}-scheme \rightsquigarrow Breuil-Kisin (prismatic) cohomology $R \Gamma_{\Delta}(X / \mathfrak{S})$
- $H_{\Delta}^{i}(X, \mathfrak{S})$ is a BK module when X is proper
- y a smooth formal $\mathcal{O}_{\mathbb{C}_{k}}$ scheme $\rightsquigarrow A_{\text {inf }}$-(prismatic) cohomology $\mathrm{R}_{\Delta}\left(y / A_{\text {inf }}\right)$
- $H_{\Delta}^{i}\left(X_{\mathcal{O}_{\mathbb{C}_{K}}}, A_{\text {inf }}\right)$ is a BKF G_{K}-module when X is proper
- $H_{\text {êt }}^{i}\left(X_{\mathbb{C}_{K}}, \mathbb{Z}_{p}\right)=\left(H_{\Delta}^{i}\left(X_{\mathcal{O}_{K}}, A_{\text {inf }}\right) \otimes_{A_{\text {inf }}} W\left(\mathbb{C}_{K}^{b}\right)\right)^{\varphi=1} \quad$ as $G_{K}-$ modules
- p^{n}-torsion version (Li-Liu '20): $R \Gamma_{\Delta, n}(X / \mathfrak{S})=R \Gamma_{\Delta}(X / \mathfrak{S}) \otimes^{\mathrm{L}} \mathbb{Z} / p^{n} \mathbb{Z}$, same for $A_{\text {inf }}$
- $H_{\Delta, n}^{i}(X, \mathfrak{S})$ are BK modules, $H_{\Delta, n}^{i}\left(X_{\mathcal{O}_{\mathbb{C}_{K}}}, A_{\text {inf }}\right)$ are BKF $G_{K}-$ modules when X is proper
- $H_{\mathrm{et}}^{i}\left(X_{\mathbb{C}_{K}}, \mathbb{Z} / p^{n} \mathbb{Z}\right)=\left(H_{\Delta, n}^{i}\left(X_{\mathcal{O}_{K}}, A_{\text {inf }}\right) \otimes_{A_{\text {inf }}} W_{n}\left(\mathbb{C}_{K}^{b}\right)\right)^{\varphi=1}$ as $G_{K}-$ modules
- Set $\quad G_{s}=\operatorname{Gal}\left(\bar{K} / K\left(\pi_{s}\right)\right), \quad G_{\infty}=\bigcap_{s} G_{s}$
- Fix $\quad M_{\mathrm{BK}}=H_{\Delta, 1}^{i}(X / \mathfrak{S}), \quad M_{\mathrm{inf}}=H_{\Delta, 1}^{i}\left(X_{\mathcal{O}_{\mathrm{C}}} / A_{\mathrm{inf}}\right)$, and set

$$
T^{\mathrm{BK}}=\left.\operatorname{Hom}_{\mathfrak{S}, \varphi}\left(M_{\mathrm{BK}}, \mathcal{O}_{\mathbb{C}_{K}}^{b}\right) \simeq T^{\vee}\right|_{G_{\infty}}, \quad T^{\text {inf }}=\operatorname{Hom}_{A_{\mathrm{inf}}, \varphi}\left(M_{\mathrm{inf}}, \mathcal{O}_{\mathbb{C}_{\mathrm{K}}}^{b}\right) \simeq T^{\vee} .
$$

- Idea: Mutate these enough to verify Fontaine's property $\left(P_{m}\right)$
- Need to relate the G_{s}-actions on T^{BK} and T^{inf} by a statement of the type

$$
\forall g \in G_{s}:(g-1) M_{\mathrm{BK}} \subseteq \mathfrak{a}^{>c} M_{\mathrm{inf}}
$$

- Reminiscent of a crystallinity criterion of Gee-Liu ('19):

$$
\begin{equation*}
\forall g \in G_{K}: \quad(g-1) M_{\text {ВК }} \subseteq\left(\left[\underline{\varepsilon}^{1 / p}\right]-1\right)[\underline{\pi}] M_{\mathrm{inf}} \tag{0}
\end{equation*}
$$

The conditions $\left(\mathrm{Cr}_{s}\right)$

$\check{C}_{\mathrm{BK}}^{\bullet}, \check{C}_{\text {inf }}^{\bullet}=$ Čech-Alexander complexes modelling $\mathrm{R} \Gamma_{\Delta}(X / \mathfrak{S}), R \Gamma_{\Delta}\left(X_{\mathcal{O}_{\mathrm{C}}} / A_{\mathrm{inf}}\right)$ There is a decreasing sequence of ideals $I_{s} \subseteq A_{\text {inf }}, s \geq 0$ such that:

Theorem (Č.)

For every i and every $s \geq 0$, one has $\check{C}_{\mathrm{BK}}^{i} \widehat{\otimes}_{\mathfrak{S}} A_{\text {inf }}=\check{C}_{\text {inf }}^{i}$ and

$$
\begin{equation*}
\forall g \in G_{s}: \quad(g-1) \check{C}_{\mathrm{BK}}^{i} \subseteq I_{s} \check{C}_{\mathrm{inf}}^{i} . \tag{s}
\end{equation*}
$$

Consequently,
(1) For every i, the cohomology groups satisfy

$$
\begin{equation*}
\forall g \in G_{K}: \quad(g-1) H_{\Delta}^{i}(X / \mathfrak{S}) \subseteq\left(\left[\underline{\varepsilon}^{1 / p}\right]-1\right)[\pi] H_{\Delta}^{i}\left(X_{\mathcal{O}_{C_{K}}} / A_{\mathrm{inf}}\right) . \tag{0}
\end{equation*}
$$

(2) For every i and every pair of integers s, n with $s+1 \geq n \geq 1$, one has

$$
\forall g \in G_{s}: \quad(g-1) H_{\Delta, n}^{i}(X / \mathfrak{S}) \subseteq\left(\left[\underline{\varepsilon}^{1 / p}\right]-1\right)[\underline{\pi}]^{p^{s-n+1}} H_{\Delta, n}^{i}\left(\mathcal{X}_{\left.\mathcal{O}_{\mathbb{C}_{K}} / A_{\mathrm{inf}}\right) .} .\right.
$$

Thank you!

