Write your name, section number (054 for 11:30, 039 for 12:30), and quiz number on the top of your quiz. (You will need a one-line calculator.)

Place your quiz face down on your desk when you are done.

QUIZ 3

1. Find the function $g(x)$ passing through the point $(2 \pi, 1)$ and whose slope at each (x, y) with $y=g(x)$ is given below by:

$$
g^{\prime}(x)=\frac{1-\cos (x)}{x-\sin (x)}
$$

Leave any numerical values as exact; do NOT round anything.
2. Find the average value of $f(x)=5 \cos (2 x)$ over $[\pi / 4,3 \pi / 4]$. Round to 3 decimal places.

QUIZ 3 Solutions

1. First integrate $g^{\prime}(x)$. Let $u=x-\sin (x)$ (so that $d u=1-\cos (x) d x$ and hence $d x=d u /(1-\cos (x)))$ to get:

$$
\int \frac{1-\cos (x)}{x-\sin (x)} d x=\int \frac{1}{u} d u=\ln (|u|)+C=\ln (|x-\sin (x)|)+C
$$

Letting $x=2 \pi$ yields that $C=1-\ln (2 \pi)$ so that:

$$
g(x)=\ln (|x-\sin (x)|)+1-\ln (2 \pi)
$$

2. Letting $u=2 x$ and making needed changes to integral yields:

$$
\begin{aligned}
f_{A V G}=\frac{\int_{\pi / 4}^{3 \pi / 4} 5 \cos (2 x) d x}{\frac{3 \pi}{4}-\frac{\pi}{4}} & =\frac{2}{\pi} \int_{\pi / 2}^{3 \pi / 2} \frac{5}{2} \cos (u) d u \\
& =\left[\frac{5}{\pi} \sin (u)\right]_{\pi / 2}^{3 \pi / 2} \\
& =\frac{2}{\pi}\left(\frac{5}{2} \sin (3 \pi / 2)-\frac{5}{2} \sin (\pi / 2)\right) \\
& =\frac{2}{\pi}\left(-\frac{5}{2}-\frac{5}{2}\right)=\frac{-10}{\pi} \approx-3.183
\end{aligned}
$$

