MA 16020 Quiz 4 (Lessons 6-7)

1. Find the general solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x e^{-y}
$$

2. Peter made tea and he let it cool down in his room. The temperature in the room is $25^{\circ} \mathrm{C}$. After 10 mintes, the tea cooled from the inital temperature $100^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. If Peter wants to start drinking the tea when its temperature is $45^{\circ} \mathrm{C}$, how much longer does he have to wait? Round the answer (in minut3es) to two decimal places.

Solution:

1. $\begin{aligned} e^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x \quad \Rightarrow \quad \int e^{y} \mathrm{~d} y=\int 3 x \mathrm{~d} x & \Rightarrow \quad e^{y}=\frac{3}{2} x^{2}+C \quad \Rightarrow \\ & \Rightarrow \quad y=\ln \left(\frac{3}{2} x^{2}+C\right) .\end{aligned}$
2. $T(t)=$ temperature after t minutes

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-k(T-25), \quad T(0)=100, T(10)=60
$$

First we solve the equation:

$$
\begin{aligned}
& \frac{1}{T-25} \cdot \frac{\mathrm{~d} T}{\mathrm{~d} t}=-k \Rightarrow \int \frac{\mathrm{~d} T}{T-25}=\int(-k) \mathrm{d} t \quad \Rightarrow \\
& \ln |T-25|=-k t+C \Rightarrow \\
& T-25= \pm e^{C} e^{-k t} \Rightarrow \quad|T-25|=e^{-k t} e^{C} \quad \Rightarrow \\
& T=25+A \cdot B^{t} \quad\left(A= \pm e^{C}, B=e^{-k}\right) .
\end{aligned}
$$

To determine A, B, one uses the initial conditions:

$$
\begin{gathered}
T(0)=100 \quad \Rightarrow \quad 100=25+A \cdot B^{0} \quad \Rightarrow \quad \underline{A=75} \\
T(10)=60 \quad \Rightarrow \quad 60=25+75 \cdot B^{10} \quad \Rightarrow \quad B=\left(\frac{60-25}{75}\right)^{1 / 10}=\left(\frac{7}{15}\right)^{1 / 10}
\end{gathered}
$$

Therefore, $T(t)=25+75 \cdot\left(\frac{7}{15}\right)^{t / 10}$. Solving $T(t)=45$ yields

$$
t / 10=\frac{\ln (20 / 75)}{\ln (7 / 15)}, \quad \text { hence } \quad t=10 \cdot \frac{\ln (20 / 75)}{\ln (7 / 15)} \approx 17.34
$$

Thus, Peter has to wait $7.34(=17.34-10)$ more minutes.

