Pavel Čoupek

Purdue University

28.11.2018

Fix an algebraically closed field k.

Problem

Problems in linear algebra •00000000

> Classify all members of a set S of (n-tuples of) matrices over k up to a "linear-algebraic" equivalence \sim .

Find representatives of the equivalence classes.

Motivation: "Matrix problems"

Example

 $\mathcal{S}=$ all matrices, $A\sim B$ iff $A=SBT^{-1}$ for some regular square matrices S,T

Solution: $A \sim B$ if and only if they are of the same dimensions and $\mathrm{rank} A = \mathrm{rank} B$. Canonical representatives are

$$\begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 & \end{pmatrix}$$

Motivation: "Matrix problems"

Example

Problems in linear algebra 00000000

> $S = \text{all square matrices}, A \sim B \text{ iff } A = SBS^{-1} \text{ for some regular}$ square matrix S

Solution: $A \sim B$ if and only if they have the same structure of generalized eigenspaces. Canonical representatives are

$$\begin{pmatrix}
J_1 & & & \\
& J_2 & & \\
& & \ddots & \\
& & & J_k
\end{pmatrix}$$

where $|J_i|$'s are the Jordan blocks.

Two subspace problem

Example

000000000

 $\mathcal{S} = \text{pairs of matrices } (A_1, A_2) \text{ with the same number of rows,}$

$$(A_1, A_2) \sim (B_1, B_2) \stackrel{def}{\Leftrightarrow} B_1 = SA_1T_1^{-1}, B_2 = SA_2T_2^{-1}$$

for some regular matrices S, T_1, T_2

Subspace form:

Given a k-vector space V and $V_1, W_1, V_2, W_2 \leq V$ its subspaces, when does an automorphism $f: V \xrightarrow{\simeq} V$ exist such that $f(V_1) = W_1$ and $f(V_2) = W_2$?

Example

Problems in linear algebra 000000000

> $\mathcal{S} = n$ -tuples of matrices (A_1, A_2, \dots, A_n) with the same number of rows.

$$(A_1, ..., A_n) \sim (B_1, ..., B_n) \stackrel{def}{\Leftrightarrow} B_i = SA_iT_1^{-1}, i = 1, 2, ..., n,$$

for some regular matrices S, T_1, T_2, \ldots, T_n

Subspace form:

Given a **k**-vector space V and $V_i, W_i \leq V$, i = 1, ..., n, its subspaces, when does an automorphism $f: V \xrightarrow{\simeq} V$ exist such that $f(V_i) = W_i, i = 1, ..., n$?

Problems in linear algebra 000000000

Example (Kronecker problem)

 $\mathcal{S} = \text{ pairs of matrices } (A_1, A_2) \text{ of the same dimensions,}$

$$(A_1, A_2) \sim (B_1, B_2) \stackrel{def}{\Leftrightarrow} B_i = SA_iT^{-1}, i = 1, 2$$

Example (3-Kronecker problem)

 $\mathcal{S} = \text{ triples of matrices } (A_1, A_2, A_3) \text{ of the same dimensions,}$

$$(A_1, A_2, A_3) \sim (B_1, B_2, B_3) \stackrel{def}{\Leftrightarrow} B_i = SA_iT^{-1}, i = 1, 2, 3$$

Simultaneous similarity

Problems in linear algebra 000000000

Example (pairs of sim. similar matrices)

 $\mathcal{S} = \text{ pairs of square matrices } (A_1, A_2) \text{ of the same order,}$

$$(A_1, A_2) \sim (B_1, B_2) \stackrel{def}{\Leftrightarrow} B_i = SA_iS^{-1}, i = 1, 2$$

Example (n-tuples of sim. similar matrices)

 $\mathcal{S} = \text{ triples of square matrices } (A_1, A_2, \dots A_n) \text{ of the same order,}$

$$(A_1, A_2, \dots, A_n) \sim (B_1, B_2, \dots, B_n) \stackrel{def}{\Leftrightarrow} B_i = SA_iS^{-1}, \forall i$$

Matrix problems in pictures

Example (2-subspace problem)

$$B_1 = SA_1T_1^{-1}, B_2 = SA_2T_2^{-1}$$

is, coordinate-freely, the commutativity of

$$V_{1} \xrightarrow{A_{1}} V \xleftarrow{A_{2}} V_{2}$$

$$\simeq \downarrow T_{1} \qquad \simeq \downarrow S \qquad \simeq \downarrow T_{2}$$

$$W_{1} \xrightarrow{B_{1}} W \xleftarrow{B_{2}} W_{2}$$

Matrix problems in pictures

Problems in linear algebra 000000000

Example (Kronecker problem)

$$B_1 = SA_1T^{-1}, B_2 = SA_2T^{-1}$$

translates to the commutativity of

$$V_1 \xrightarrow{A_2} V_2$$

$$\simeq \downarrow_T \xrightarrow{B_2} \simeq \downarrow_S$$

$$W_1 \xrightarrow{B_1} W_2$$

(in the respective squares).

Representations of quivers

Definition

A quiver Q = (V, E) consists of

- a finite collection of vertices V.
- a finite set of oriented edges E between them;

multiple edges and loops are allowed.

Denote $s: E \to V$, $t: E \to V$ the source and target functions.

Definition

A k-linear representation of a quiver Q = (V, E) consists of

- ightharpoonup for each vertex v, a k-linear space M_v ,
- for each edge α , a **k**-linear map $f_{\alpha}: M_{s(\alpha)} \to M_{t(\alpha)}$.

A homomorphism of rep's $(M_v, f_\alpha) \to (M'_v, f'_\alpha)$ is a collection of **k**-linear maps $q_v: M_v \to M_v'$ compatible with the edge maps.

Example (2-subspace)

The datum of vector spaces and linear maps

$$V_1 \xrightarrow{A_1} V \xleftarrow{A_2} V_2$$

is a representation of the quiver

$$\stackrel{1}{\bullet} \stackrel{\alpha}{\longrightarrow} \stackrel{3}{\bullet} \stackrel{\beta}{\longleftarrow} \stackrel{2}{\bullet} .$$

Example (Kronecker)

The datum of vector spaces and linear maps

$$V_1 \xrightarrow{A_2} V_2$$

is a representation of the quiver

The corresponding quivers to other matrix problems are:

$$\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet}$$

similarity problem

3-subspace problem

$$\stackrel{1}{\bullet} \longrightarrow \stackrel{4}{\bullet} \longleftarrow$$

2-similarity problem

Quiver algebras •0000

Path algebra of a quiver

Definition

A path in a quiver Q is either a vertex, or sequence of arrows $p = \alpha_n \alpha_{n-1} \cdots \alpha_1$ such that $s(\alpha_i) = t(\alpha_{i-1})$

Definition

A path algebra $\mathbf{k}Q$ of a quiver Q=(V,E) is given by

- the vector space with basis = the set of all paths.
- multiplication given on the basis by

$$p \cdot q = \begin{cases} \text{the path } pq \text{ if they connect,} \\ 0 \text{ otherwise.} \end{cases}$$

Quiver algebras 00000

To give a representation (M_v, f_α) of quiver Q is to give a left kQ-module M:

- $igwedge M \stackrel{def}{=} \bigoplus_{v} M_v$ with $\alpha \cdot (m_{v_1} + m_{v_2} + \dots m_{v_l}) \stackrel{def}{=} f_{\alpha}(m_{s(\alpha)}).$
- \blacktriangleright The representation of Q can be recovered from M by setting $M_v = v \cdot M$ and $f_{\alpha} = [\alpha \cdot -]$.

Thus, to solve a given matrix problem is equivalent to classification of finite-dimensional modules of the corresponding quiver algebra.

Some examples

$$\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet}$$

$$\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet} \longrightarrow \dots \longrightarrow \stackrel{2}{\circ}$$

$$\overset{1}{\bullet} \overset{2}{\longrightarrow} \overset{2}{\bullet}$$

$$\mathbf{k}[X]$$

$$\begin{pmatrix} \mathbf{k} & \mathbf{k} \\ 0 & \mathbf{k} \end{pmatrix}$$

Upper triangular $n \times n$ matrices

$$\begin{pmatrix} \mathbf{k} & \mathbf{k} \oplus \mathbf{k} \\ 0 & \mathbf{k} \end{pmatrix}$$

 $\mathbf{k}\langle X,Y\rangle$ (2 noncomm. free var's)

Indecomposable modules and representation types

Let A be a k-algebra and M a left A-module of finite dimension.

Definition

M is called *indecomposable* if $M \neq 0$ and whenever $M = M_1 \oplus M_2$, then $M_1 = M$ and $M_2 = 0$, or vice versa.

Theorem (Krull-Schmidt-Remak-Azumaya)

Given a fin.-dim. left A-module M, it can be written as $M = \bigoplus_{i=1}^{n} M_i$, where M_i 's are indecomposable, and this decomposition is unique (up to permutation and isomorphism of the factors).

Our goal revised: Classify all the indecomposable fin.-dim. modules of a given quiver algebra.

Trichotomy of representation type

Definition (not really a definition)

A k-algebra A is

- of finite representation type if there are only finitely many indecomposable fin.-dim. A-modules (e.g. the rank problem)
- of tame representation type if the indecomposable modules can form countably many one-parameter families $M_{\lambda}, \ \lambda \in \mathbf{k}$ (e.g. the similarity problem)
- of wild representation type otherwise. (e.g. the 2-similarity problem)

Theorem (Drozd; "wild type is bad")

Given an algebra A of wild representation type and Λ any fin.-dim. algebra, there is an exact functor $\Lambda\mathrm{-mod}\to A\mathrm{-mod}$ preserving (and not identifying) indecomposables.

Quiver Algebras Purdue University

Theorem (Gabriel)

A quiver Q is of finite representation type if and only if its underlying non-oriented graph is a disjoint union of the Dynkin diagrams A_n, D_n, E_6, E_7, E_8 :

Theorem (Gabriel)

A quiver Q is of finite representation type if and only if its underlying non-oriented graph is a disjoint union of the Dynkin diagrams A_n, D_n, E_6, E_7, E_8 :

A quiver Q is of tame representation type if and only if its underlying graph is a disjoint union of A_n, D_n, E_6, E_7, E_8 , and the extended Dynkin diagrams \widehat{A}_n , \widehat{D}_n , \widehat{E}_6 , \widehat{E}_7 , \widehat{E}_8 :

Theorem (Nazarova)

A quiver Q is of tame representation type if and only if its underlying graph is a disjoint union of A_n, D_n, E_6, E_7, E_8 , and the extended Dynkin diagrams $\widehat{A_n}, \widehat{D_n}, \widehat{E_6}, \widehat{E_7}, \widehat{E_8}$:

Back to: n-subspace problem

The 3-subspace problem is of finite representation type (D_4) ; the indecomposables are (up to "permutation of legs"):

$$\mathbf{k} \xrightarrow{1} \mathbf{k} \xleftarrow{0} 0 \qquad \mathbf{k} \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} \mathbf{k} \oplus \mathbf{k} \xleftarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} \mathbf{k}$$

Back to: *n*-subspace problem

The 4-subspace problem is not of finite representation type; there is a family of indecomposables indexed by $\lambda \in \mathbf{k}, \lambda \neq 0, 1$:

$$\mathbf{k} \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} \mathbf{k} \oplus \mathbf{k} \xleftarrow{\begin{pmatrix} 1 \\ \lambda \end{pmatrix}} \mathbf{k}$$

It is, however, of tame representation type $(\widehat{D_4})$: Nothing worse than the above can happen.

Back to: *n*-subspace problem

The 5-subspace problem is of wild representation type; there is a family of indecomposables indexed by $\lambda, \sigma \in \mathbf{k}$:

General (bounded) quiver algebras

Given a path algebra of a quiver kQ, denote by \mathfrak{R}_Q the two-sided ideal generated by all arrows of Q.

Definition

A two-sided ideal ideal $\mathfrak{a} \subseteq \mathbf{k}Q$ is admissible if $\mathfrak{R}_O^m \subseteq \mathfrak{a} \subseteq \mathfrak{R}_O^2$ for some $m \geq 0$. In that case we call $A = kQ/\mathfrak{a}$ a quiver algebra (of quiver Q with relations \mathfrak{a})

Example

$$\mathfrak{a} = \langle \beta \alpha - \delta \gamma \rangle$$

Then (kQ/\mathfrak{a}) -modules are precisely the representations of Q for which the square is commutative.

Definition

Rings R, S are Morita equivalent if R-Mod and S-Mod are equivalent as additive categories.

(If R, S are fin.-dim. algebras, the same is true for the full subcategories of fin.-dim. modules.)

Theorem (Gabriel)

Let A be any finite-dimensional algebra over an algebraically closed field. Then A is Morita equivalent to a bounded quiver algebra (of a finite quiver).

In particular, to provide a classification of bounded quiver algebras to finite/tame/wild type amounts to classifying all finite-dimensional algebras.

