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Problems in linear algebra Representations of quivers Quiver algebras Some results

Motivation: ”Matrix problems”

Fix an algebraically closed field k.

Problem

Classify all members of a set S of (n-tuples of) matrices over k up

to a ”linear-algebraic” equivalence ∼.
Find representatives of the equivalence classes.
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Motivation: ”Matrix problems”

Example

S = all matrices, A ∼ B iff A = SBT−1 for some regular square
matrices S, T

Solution: A ∼ B if and only if they are of the same dimensions
and rankA = rankB. Canonical representatives are

1
. . .

1
0

. . .

0
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Problems in linear algebra Representations of quivers Quiver algebras Some results

Motivation: ”Matrix problems”

Example

S = all square matrices, A ∼ B iff A = SBS−1 for some regular
square matrix S

Solution: A ∼ B if and only if they have the same structure of
generalized eigenspaces. Canonical representatives are

J1

J2
. . .

Jk

 ,

where Ji ’s are the Jordan blocks.
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Two subspace problem

Example

S = pairs of matrices (A1, A2) with the same number of rows,

(A1, A2) ∼ (B1, B2)
def⇔ B1 = SA1T

−1
1 , B2 = SA2T

−1
2

for some regular matrices S, T1, T2

Subspace form:

Given a k-vector space V and V1,W1, V2,W2 ≤ V its subspaces,

when does an automorphism f : V
'−→ V exist such that

f(V1) = W1 and f(V2) = W2?
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n−subspace problem

Example

S = n-tuples of matrices (A1, A2, . . . , An) with the same number
of rows,

(A1, . . . , An) ∼ (B1, . . . , Bn)
def⇔ Bi = SAiT

−1
1 , i = 1, 2, . . . , n,

for some regular matrices S, T1, T2, . . . , Tn

Subspace form:

Given a k-vector space V and Vi,Wi ≤ V, i = 1, . . . , n, its

subspaces, when does an automorphism f : V
'−→ V exist such

that f(Vi) = Wi, i = 1, . . . , n?
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Kronecker problems

Example (Kronecker problem)

S = pairs of matrices (A1, A2) of the same dimensions,

(A1, A2) ∼ (B1, B2)
def⇔ Bi = SAiT

−1, i = 1, 2

Example (3-Kronecker problem)

S = triples of matrices (A1, A2, A3) of the same dimensions,

(A1, A2, A3) ∼ (B1, B2, B3)
def⇔ Bi = SAiT

−1, i = 1, 2, 3
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Simultaneous similarity

Example (pairs of sim. similar matrices)

S = pairs of square matrices (A1, A2) of the same order,

(A1, A2) ∼ (B1, B2)
def⇔ Bi = SAiS

−1, i = 1, 2

Example (n−tuples of sim. similar matrices)

S = triples of square matrices (A1, A2, . . . An) of the same order,

(A1, A2, . . . , An) ∼ (B1, B2, . . . , Bn)
def⇔ Bi = SAiS

−1, ∀i
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Matrix problems in pictures

Example (2-subspace problem)

B1 = SA1T
−1
1 , B2 = SA2T

−1
2

is, coordinate-freely, the commutativity of

V1 V V2

W1 W W2

A1

T1' S'

A2

T2'
B1 B2
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Matrix problems in pictures

Example (Kronecker problem)

B1 = SA1T
−1, B2 = SA2T

−1

translates to the commutativity of

V1 V2

W1 W2

A1

A2

T' S'

B1

B2

(in the respective squares).
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Representations of quivers

Definition
A quiver Q = (V,E) consists of

I a finite collection of vertices V ,

I a finite set of oriented edges E between them;

multiple edges and loops are allowed.
Denote s : E → V, t : E → V the source and target functions.

Definition
A k-linear representation of a quiver Q = (V,E) consists of

I for each vertex v, a k-linear space Mv,

I for each edge α, a k-linear map fα : Ms(α) →Mt(α).

A homomorphism of rep’s (Mv, fα)→ (M ′v, f
′
α) is a collection of

k-linear maps gv : Mv →M ′v compatible with the edge maps.
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Example (2-subspace)

The datum of vector spaces and linear maps

V1 V V2
A1 A2

is a representation of the quiver

1• 3• 2• .α β

Example (Kronecker)

The datum of vector spaces and linear maps

V1 V2A1

A2

is a representation of the quiver

1• 2• .α

β
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The corresponding quivers to other matrix problems are:

rank problem
1• 2•

similarity problem
1•

3-subspace problem

1• 4• 3•

2•

2-similarity problem
1•
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Path algebra of a quiver

Definition
A path in a quiver Q is either a vertex, or sequence of arrows
p = αnαn−1 · · ·α1 such that s(αi) = t(αi−1)

Definition
A path algebra kQ of a quiver Q = (V,E) is given by

I the vector space with basis = the set of all paths,

I multiplication given on the basis by

p · q =

{
the path pq if they connect,

0 otherwise.
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Proposition (and proof)

To give a representation (Mv, fα) of quiver Q is to give a left
kQ-module M :

I M
def
=
⊕

vMv with α · (mv1 +mv2 + . . .mvl)
def
= fα(ms(α)).

I The representation of Q can be recovered from M by setting
Mv = v ·M and fα = [α · −].

Thus, to solve a given matrix problem is equivalent to classification
of finite-dimensional modules of the corresponding quiver algebra.
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Some examples

1• k[X]

1• 2•
(
k k
0 k

)
1• 2• . . .

n• Upper triangular n× n matrices

1• 2• .
(
k k⊕ k
0 k

)
1• k〈X,Y 〉 (2 noncomm. free var’s)
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Indecomposable modules and representation types

Let A be a k-algebra and M a left A-module of finite dimension.

Definition
M is called indecomposable if M 6= 0 and whenever
M = M1 ⊕M2, then M1 = M and M2 = 0, or vice versa.

Theorem (Krull-Schmidt-Remak-Azumaya)

Given a fin.-dim. left A-module M , it can be written as
M =

⊕n
i=1Mi, where Mi’s are indecomposable, and this

decomposition is unique (up to permutation and isomorphism of
the factors).

Our goal revised: Classify all the indecomposable fin.-dim.
modules of a given quiver algebra.
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Trichotomy of representation type

Definition (not really a definition)

A k-algebra A is

I of finite representation type if there are only finitely many
indecomposable fin.-dim. A-modules (e.g. the rank problem)

I of tame representation type if the indecomposable modules
can form countably many one-parameter families Mλ, λ ∈ k
(e.g. the similarity problem)

I of wild representation type otherwise. (e.g. the 2-similarity
problem)

Theorem (Drozd; ”wild type is bad”)

Given an algebra A of wild representation type and Λ any fin.-dim.
algebra, there is an exact functor Λ−mod→ A−mod preserving
(and not identifying) indecomposables.
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Theorem (Gabriel)

A quiver Q is of finite representation type if and only if its
underlying non-oriented graph is a disjoint union of the Dynkin
diagrams An, Dn, E6, E7, E8:

An
1• 2• 3• · · · n−1• n•

Dn

1• 2• 3• · · · n−2• n−1•

n•
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Theorem (Gabriel)

A quiver Q is of finite representation type if and only if its
underlying non-oriented graph is a disjoint union of the Dynkin
diagrams An, Dn, E6, E7, E8:

E6

1• 2• 3• 4• 5•

6•

E7

1• 2• 3• 4• 5• 6•

7•

E8

1• 2• 3• 4• 5• 6• 7•

8•
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Theorem (Nazarova)

A quiver Q is of tame representation type if and only if its
underlying graph is a disjoint union of An, Dn, E6, E7, E8, and the
extended Dynkin diagrams Ân, D̂n, Ê6, Ê7, Ê8:

Ân

1• 2• 3• · · · n−1• n•

n+1•

D̂n

1• 2• 3• · · · n−2• n−1•

n• n+1•
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Theorem (Nazarova)

A quiver Q is of tame representation type if and only if its
underlying graph is a disjoint union of An, Dn, E6, E7, E8, and the
extended Dynkin diagrams Ân, D̂n, Ê6, Ê7, Ê8:

Ê6

1• 2• 3• 4• 5•

6• 7•

Ê7

8• 1• 2• 3• 4• 5• 6•

7•

E8

1• 2• 3• 4• 5• 6• 7• 9•

8•
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Back to: n-subspace problem

The 3-subspace problem is of finite representation type (D4); the
indecomposables are (up to ”permutation of legs”):

0 k 0

0

0 0

0

k 0 0

0

0 0

0

k k 0

0

1 0

0

k k 0

k

1 0

1
k k⊕ k k

k

(
1

0

) (
0

1

)
(

1

1

)
k k 0

0

1 0

0
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Back to: n-subspace problem

The 4-subspace problem is not of finite representation type; there
is a family of indecomposables indexed by λ ∈ k, λ 6= 0, 1:

k

k k⊕ k k

k

(
1

0

)(
0

1

) (
1

λ

)
(

1

1

)

It is, however, of tame representation type (D̂4): Nothing worse
than the above can happen.
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Back to: n-subspace problem

The 5-subspace problem is of wild representation type; there is a
family of indecomposables indexed by λ, σ ∈ k:

k

k k⊕ k k

k k

(
1

0

)(
0

1

) (
1

1

)

(
1

λ

) (
1

σ

)
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General (bounded) quiver algebras

Given a path algebra of a quiver kQ, denote by RQ the two-sided
ideal generated by all arrows of Q.

Definition
A two-sided ideal ideal a ⊆ kQ is admissible if Rm

Q ⊆ a ⊆ R2
Q for

some m ≥ 0. In that case we call A = kQ/a a quiver algebra (of
quiver Q with relations a)

Example

Q :

1• 2•

3• 4•

α

γ β

δ

a = 〈βα− δγ〉

Then (kQ/a)-modules are precisely the
representations of Q for which the square
is commutative.
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Definition
Rings R,S are Morita equivalent if R-Mod and S-Mod are
equivalent as additive categories.
(If R,S are fin.-dim. algebras, the same is true for the full
subcategories of fin.-dim. modules.)

Theorem (Gabriel)

Let A be any finite-dimensional algebra over an algebraically closed
field. Then A is Morita equivalent to a bounded quiver algebra (of
a finite quiver).

In particular, to provide a classification of bounded quiver algebras
to finite/tame/wild type amounts to classsifying all
finite-dimensional algebras.
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