Online homework 4, Problem 9

For each of the following equations, find the most general function $N(x, y)$ so that the equation is exact.
(a) $\left(3 y \sin (3 x y)+e^{x}\right) \mathrm{d} x+N(x, y) \mathrm{d} y=0$
(b) $\left(y e^{8 x y}-8 x^{4} y+2\right) \mathrm{d} x+N(x, y) \mathrm{d} y=0$

Solution:
(a) We have

$$
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(3 y \sin (3 x y)+e^{x}\right)=3 \sin (3 x y)+9 x y \cos (3 x y)
$$

and the condition guaranteeing exactness is that this is equal to $\frac{\partial N}{\partial x}$. Thus, we obtain the condition

$$
\frac{\partial N}{\partial x}=3 \sin (3 x y)+9 x y \cos (3 x y)
$$

and we may thus recover $N(x, y)$ by integrating this expression with respect to x. That is,

$$
N(x, y)=\int(3 \sin (3 x y)+9 x y \cos (3 x y)) \mathrm{d} x
$$

What remains is to evaluate the integral. We have $\int 3 \sin (3 x y) \mathrm{d} x=\frac{-\cos 3 x y}{y}$, and to compute $\int 9 x y \cos (3 x y) \mathrm{d} x$, we integrate by parts $(u=9 x y$ and $\mathrm{d} v=\cos (3 x y)$, so that $\mathrm{d} u=9 y$ and $v=$ $\left.\frac{\sin (3 x y)}{3 y}\right)$:

$$
\int 9 x y \cos (3 x y) \mathrm{d} x=9 x y \cdot \frac{\sin (3 x y)}{3 y}-\int 3 \sin (3 x y) \mathrm{d} x=9 x y \cdot \frac{\sin (3 x y)}{3 y}+\frac{\cos (3 x y)}{y}
$$

Thus, we have

$$
N(x, y)=\frac{-\cos 3 x y}{y}+9 x y \cdot \frac{\sin (3 x y)}{3 y}+\frac{\cos (3 x y)}{y}+g(y)=9 x y \cdot \frac{\sin (3 x y)}{3 y}+g(y)
$$

where $g(y)$ is an arbitrary function depending only on y.
(b) We proceed exactly as in the previous part. We have

$$
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(y e^{8 x y}-8 x^{4} y+2\right)=e^{8 x y}+8 x y e^{8 x y}-8 x^{4}
$$

hence

$$
N(x, y)=\int\left(e^{8 x y}+8 x y e^{8 x y}-8 x^{4}\right) \mathrm{d} x=-\frac{8}{5} x^{5}+\frac{1}{8 y} \int\left(e^{u}+u e^{u}\right) \mathrm{d} u
$$

where the substitution $u=8 x y$ was used (so that $\mathrm{d} u=8 y \mathrm{~d} x$). The integral (antiderivative) of $e^{u}+u e^{u}$ is $u e^{u}$ (check the derivative of this, or to deduce it, integrate by parts again), so we have

$$
N(x, y)=-\frac{8}{5} x^{5}+\frac{1}{8 y}(8 x y) e^{8 x y}+g(y)=x e^{8 x y}-\frac{8}{5} x^{5}+g(y)
$$

where $g(y)$ is again an arbitrary function depending only on y.

