Quiz 1 Solution

1. Find all m such that the function $\varphi(x)=x^{m}$ is a solution to the equation

$$
2 x^{2} \frac{\mathrm{~d}^{2} y}{(\mathrm{~d} x)^{2}}-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0
$$

Solution: For $y=x^{m}$ we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=m x^{m-1}, \quad \frac{\mathrm{~d}^{2} y}{(\mathrm{~d} x)^{2}}=m(m-1) x^{m-2}
$$

so plugging into the diff. equation yields

$$
\begin{aligned}
2 x^{2} \cdot m(m-1) x^{m-2}-3 x \cdot m x^{m-1}+2 x^{m} & =0 \\
2 m(m-1) x^{m}-3 m x^{m}+2 x^{m} & =0 \\
(2 m(m-1)-3 m+2) x^{m} & =0 \\
2 m(m-1)-3 m+2 & =0 \\
2 m^{2}-5 m+2 & =0 .
\end{aligned}
$$

The discriminant of the resulting quadratic equation is $25-4 \cdot 2 \cdot 2=9$, and so the two solutions to this equation are

$$
m=\frac{5 \pm \sqrt{9}}{2 \cdot 2}=2, \frac{1}{2}
$$

Therefore the desired exponents m are $m=2$ and $m=1 / 2$.

