Quiz 2 Solution

1. Find the general solution to the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+2 x^{2}
$$

Solution: The equation is a linear differential equation. We rewrite it to its standard form,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{1}{x} \cdot y=2 x^{2}
$$

and solve by the method of integrating factors. The integrating factor is

$$
\mu(x)=e^{\int\left(-\frac{1}{x}\right) \mathrm{d} x}=e^{-\ln x}=\frac{1}{x}
$$

and so the solution is given by

$$
y=\frac{\int \mu(x) \cdot 2 x^{2} \mathrm{~d} x}{\mu(x)}=\frac{\int 2 x \mathrm{~d} x}{\frac{1}{x}}=x\left(x^{2}+C\right)=x^{3}+C x
$$

where C is an arbitrary constant.
[Remark: in this solution, I am assuming $x>0$ so that $\int \frac{1}{x} \mathrm{~d} x=\ln x$. In case you used the more general $\int \frac{1}{x} \mathrm{~d} x=\ln |x|$, this is also good (in fact, better), and ultimately leads to the same result; however, the manipulation with the absolute values might be more complicated.]
2. Determine whether the equation

$$
\left(10 x y^{3}-3 y e^{x y}\right) \mathrm{d} x+\left(15 x^{2} y^{2}-3 x e^{x y}\right) \mathrm{d} y=0
$$

is exact, and if it is, solve it.
Solution: We apply the test for exactness, i.e. compute $\frac{\partial}{\partial y}\left(10 x y^{3}-3 y e^{x y}\right), \frac{\partial}{\partial x}\left(15 x^{2} y^{2}-3 x e^{x y}\right)$ and compare them. We have

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(10 x y^{3}-3 y e^{x y}\right) & =30 x y^{2}-3 e^{x y}-3 x y e^{x y} \\
\frac{\partial}{\partial x}\left(15 x^{2} y^{2}-3 x e^{x y}\right) & =30 x y^{2}-3 e^{x y}-3 x y e^{x y}
\end{aligned}
$$

These two are equal, so the equation is exact.
To solve the equation, we have to find the "potential function" $F(x, y)$, that is, a function with $\frac{\partial}{\partial x} F(x, y)=10 x y^{3}-3 y e^{x y}$ and $\frac{\partial}{\partial y} F(x, y)=15 x^{2} y^{2}-3 x e^{x y}$.

Integrating the first expression with respect to x yields

$$
F(x, y)=\int 10 x y^{3}-3 y e^{x y} \mathrm{~d} x=5 x^{2} y^{3}-3 e^{x y}+g(y)
$$

where $g(y)$ is a function depending possibly on y. To determine $g(y)$, we use the second condition on partial derivatives of F. We have

$$
15 x^{2} y^{2}-3 x e^{x y}=\frac{\partial}{\partial y} F(x, y)=\frac{\partial}{\partial y}\left(5 x^{2} y^{3}-3 e^{x y}+g(y)\right)=15 x^{2} y^{2}-3 x e^{x y}+\frac{\mathrm{d} g}{\mathrm{~d} y}
$$

so $\frac{\mathrm{d} g}{\mathrm{~d} y}=0$ and $g(y)$ is thus an arbitrary constant, we may choose e.g. $g(y)=0$. Thus, $F(x, y)=$ $5 x^{2} y^{3}-3 e^{x y}$, and the (implicit) solutions to the equation are of the form

$$
5 x^{2} y^{3}-3 e^{x y}=C, C \text { an arbitrary constant. }
$$

