Quiz 3 Solution

1. Find the general solution to the equation

$$
5 y^{\prime}-y=y^{-4} .
$$

Solution: This is a Bernoulli equation with y^{-4} on the right-hand side, and so we use the substitution $v=y^{1-(-4)}=y^{5}$. That is, we have $y=y^{-4} v$, and

$$
v^{\prime}=\left(y^{5}\right)^{\prime}=5 y^{4} y^{\prime} \text {, i.e. } y^{\prime}=\frac{1}{5} y^{-4} v^{\prime} \text {. }
$$

Plugging these expressions for y and y^{\prime} in the original equation yields

$$
y^{-4} v^{\prime}-y^{-4} v=y^{-4}
$$

so we may cancel y^{-4} and obtain the simplified equation

$$
v^{\prime}-v=1 .
$$

This is a linear equation which we may solve e.g. by the method of integrating factors: we have

$$
\mu(x)=e^{\int(-1) \mathrm{d} x}=e^{-x},
$$

hence

$$
v=\frac{\int 1 \cdot e^{-x} \mathrm{~d} x}{e^{-x}}=e^{x}\left(-e^{-x}+C\right)=C e^{x}-1 .
$$

Since $y=\sqrt[5]{v}$, we have

$$
y=\sqrt[5]{C e^{x}-1}
$$

where C is an arbitrary constant.
2. An object of mass 1 kg starts falling through the air. The air resistance force (in Newtons) is $-2 v$ where v is the velocity of the object, the acceleration due to gravity is assumed to be $10 \mathrm{~m} / \mathrm{sec}^{2}$. Determine the equation of the motion of the object (i.e. the equation describing the position $x(t)$).
[The initial velocity and position are both assumed to be 0.]
Solution: The equation from Newton's law of motion has in this case the form

$$
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g-2 v
$$

(where $m g$ is the force due to gravity and $-2 v$ is the force of air resistance given in the problem statement). Plugging in $m=1 \mathrm{~kg}$ and $g=10 \mathrm{~m} / \mathrm{sec}^{2}$ yields the linear differential equation

$$
\begin{gathered}
\frac{\mathrm{d} v}{\mathrm{~d} t}=10-2 v, \\
\frac{\mathrm{~d} v}{\mathrm{~d} t}+2 v=10
\end{gathered}
$$

We can solve this either by separation of variables, or by the integrating factor method. Let us use the integrating factor. The factor is

$$
\mu(t)=e^{\int 2 \mathrm{~d} t}=e^{2 t}
$$

so the solution v of the equation is

$$
v(t)=\frac{\int 10 e^{2 t} \mathrm{~d} t}{e^{2 t}}=\left(5 e^{2 t}+C\right) e^{-2 t}=5+C e^{-2 t}
$$

Plugging in the initial condition $v(0)=0$ (meaning that at the beginning of the fall, the velocity of the dropped object is 0) yields $C=-5$. Thus,

$$
v(t)=5-5 e^{-2 t}
$$

To get the equation of the motion, i.e. to determine te position function $x(t)$, we integrate the velocity with respect to time, i.e.

$$
x(t)=\int_{0}^{t} v(s) \mathrm{d} s=\int_{0}^{t}\left(5-5 e^{-2 s}\right) \mathrm{d} s=\left[5 s+\frac{5}{2} e^{-2 s}\right]_{0}^{t}=5 t+\frac{5}{2} e^{-2 t}-\frac{5}{2}
$$

