Quiz 4 Solution

1. Find a solution to the system of linear equations

$$\begin{aligned} 2x_1 + x_2 + x_3 &= 2\\ 2x_2 + x_3 &= -1\\ -x_1 &+ x_3 &= 0 \ . \end{aligned}$$

Solution:

An elementary solution: Third equation can be rewritten as $x_1 = x_3$, so we may plug in x_1 for x_3 in the first two equations and obtain

$$3x_1 + x_2 = 2 x_1 + 2x_2 = -1$$

Subtracting the second equation from the first one three times gives $-5x_2 = 5$, so $x_2 = -1$. Plugging this into the first equation gives $3x_1 - 1 = 2$, so $x_1 = 1$, and so the solution is $x_1 = 1, x_2 = -1, x_3 = x_1 = 1$. A systematic solution: We use row operations on the (augmented) matrix of the system. We have

$$\begin{bmatrix} 2 & 1 & 1 & | & 2 \\ 0 & 2 & 1 & | & -1 \\ -1 & 0 & 1 & | & 0 \end{bmatrix} \sim_1 \begin{bmatrix} -1 & 0 & 1 & | & 0 \\ 2 & 1 & 1 & | & 2 \\ 0 & 2 & 1 & | & -1 \end{bmatrix} \sim_2 \begin{bmatrix} -1 & 0 & 1 & | & 0 \\ 0 & 1 & 3 & | & 2 \\ 0 & 2 & 1 & | & -1 \end{bmatrix} \sim_3 \begin{bmatrix} -1 & 0 & 1 & | & 0 \\ 0 & 1 & 3 & | & 2 \\ 0 & 0 & -5 & | & -5 \end{bmatrix} \sim_4 \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 3 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim_5$$
$$\sim_5 \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim_6 \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

(where

 \sim_1 =swapping the rows appropriately,

 \sim_2 =adding the first row to the second 2 times,

 \sim_3 =subtracting the second row from the third 2 times,

 \sim_4 =dividing the third row by -5 and the first row by -1,

 \sim_5 =subtracting the third row from the second 3 times,

 \sim_6 =addding the third row to the first). Thus, we obtain the same solution, i.e. $x_1 = 1, x_2 = -1, x_3 = 1$.

2. Determine whether the vector
$$\begin{bmatrix} 0\\6\\8 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} -1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -2\\1\\2 \end{bmatrix}$, and justify.

Solution: To decide whether the first vector is a linear combination of the other two is the same as to decide whether the vector equation

$$x_1 \begin{bmatrix} -1\\2\\3 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\2 \end{bmatrix} = \begin{bmatrix} 0\\6\\8 \end{bmatrix}$$
(1)

has a solution (x_1, x_2) . By row operations, we may reduce the associated augmented matrix of the system as follows:

$$\begin{bmatrix} -1 & -2 & 0 \\ 2 & 1 & 6 \\ 3 & 2 & 8 \end{bmatrix} \sim_{0} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 6 \\ 3 & 2 & 8 \end{bmatrix} \sim_{1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 6 \\ 3 & 2 & 8 \end{bmatrix} \sim_{2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 6 \\ 0 & -4 & 8 \end{bmatrix} \sim_{3}$$

$$\sim_{3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{bmatrix} \sim_{4} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \sim_{5} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

(where

 \sim_0 =multiplying the first row by (-1), \sim_1 =subtracting the first row from the second 2 times, \sim_2 =subtracting the first row from the third 3 times, \sim_3 =dividing the second row by -3 and the third row by -4, \sim_4 =subtracting the second row from the third, \sim_5 =subtracting the second row from the first 2 times).

We see that the system has a solution $x_1 = 4, x_2 = -2$, and so the vector $\begin{bmatrix} 0\\6\\8 \end{bmatrix}$ is a linear combination

of the vectors $\begin{bmatrix} -1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -2\\1\\2 \end{bmatrix}$, . [*Remark:* If we are not interested in the coefficients x_1, x_2 , we could have stop the computation e.g. after \sim_4 : The key information is that the right-hand side column is not the pivot column of the augmented matrix.]