Quiz 5 Solution

1. Compute the inverse of the matrix

$$\begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -2 & -2 & 1 \\ 2 & 6 & 1 & 4 \\ 2 & 4 & 4 & -1 \end{bmatrix}.$$

Solution: We use the method from the lecture, i.e. by row operations we transform A into the identity matrix and keep track of the used operations on a identity matrix, which will transform into the inverse matrix we want. We have

$\begin{bmatrix} 1 & 3 \\ -1 & -2 \\ 2 & 6 \\ 2 & 4 \end{bmatrix}$	$\begin{array}{c cc} 0 & 3 \\ -2 & 1 \\ 1 & 4 \\ 4 & -1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} & 0 \\ & 0 \\ & 0 \\ & 1 \end{bmatrix} \sim_1 \begin{bmatrix} \\ & \\ & \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} 0 & 3 \\ -2 & 4 \\ 1 & -2 \\ 4 & -7 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right] \sim_2$
$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & - \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{array}{c ccccc} 0 & 3 & 1 \\ 2 & 4 & 1 \\ 1 & -2 & - \\ 0 & 1 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \sim_3 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$\begin{array}{ccccccc} 1 & 3 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{c c c} 0 & 1 \\ 2 & 0 & 1 \\ 0 & -2 \\ 1 & 0 \end{array}$	$-6\\-7\\4\\2$	$egin{array}{ccc} 0 & -3 \ 0 & -4 \ 1 & 2 \ 0 & 1 \ \end{array} \sim_4$
$\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ccc} -6 & 0 \\ 1 & 2 \\ 4 & 1 \\ 2 & 0 \end{array}$	$\begin{bmatrix} -3\\0\\2\\1 \end{bmatrix} \sim_5$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} -9 \\ 1 \\ 4 \\ 2 \end{array}$	$ \begin{bmatrix} -6 & -3 \\ 2 & 0 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} $

(where

 \sim_1 =adding suitable multiples of the first row to the others to clear the first column,

 \sim_2 =adding the first row to the third 2 times,

 \sim_3 =adding suitable multiples of the fourth row to the others to clear the fourth column, \sim_4 =adding the third row to the second 2 times,

 \sim_5 =subtracting the second row from the first 3 times).

Thus, we see that the inverse matrix to the given matrix is the matrix

$$\begin{bmatrix} 10 & -9 & -6 & -3 \\ -3 & 1 & 2 & 0 \\ -2 & 4 & 1 & 2 \\ 0 & 2 & 0 & 1 \end{bmatrix}.$$