Quiz 5 Solution

1. Compute the inverse of the matrix

$$
\left[\begin{array}{cccc}
1 & 3 & 0 & 3 \\
-1 & -2 & -2 & 1 \\
2 & 6 & 1 & 4 \\
2 & 4 & 4 & -1
\end{array}\right] .
$$

Solution: We use the method from the lecture, i.e. by row operations we transform A into the identity matrix and keep track of the used operations on a identity matrix, which will transform into the inverse matrix we want. We have

$$
\begin{aligned}
& {\left[\begin{array}{cccc|cccc}
1 & 3 & 0 & 3 & 1 & 0 & 0 & 0 \\
-1 & -2 & -2 & 1 & 0 & 1 & 0 & 0 \\
2 & 6 & 1 & 4 & 0 & 0 & 1 & 0 \\
2 & 4 & 4 & -1 & 0 & 0 & 0 & 1
\end{array}\right] \sim_{1}\left[\begin{array}{cccc|cccc}
1 & 3 & 0 & 3 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 4 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & -2 & 0 & 1 & 0 \\
0 & -2 & 4 & -7 & -2 & 0 & 0 & 1
\end{array}\right] \sim_{2}} \\
& {\left[\begin{array}{cccc|cccc}
1 & 3 & 0 & 3 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 4 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & -2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 2 & 0 & 1
\end{array}\right] \sim_{3}\left[\begin{array}{cccc|cccc}
1 & 3 & 0 & 0 & 1 & -6 & 0 & -3 \\
0 & 1 & -2 & 0 & 1 & -7 & 0 & -4 \\
0 & 0 & 1 & 0 & -2 & 4 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 2 & 0 & 1
\end{array}\right] \sim_{4}} \\
& {\left[\begin{array}{cccc|cccc}
1 & 3 & 0 & 0 & 1 & -6 & 0 & -3 \\
0 & 1 & 0 & 0 & -3 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 & -2 & 4 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 2 & 0 & 1
\end{array}\right] \sim_{5}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 10 & -9 & -6 & -3 \\
0 & 1 & 0 & 0 & -3 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 & -2 & 4 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 2 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

(where
$\sim_{1}=$ adding suitable multiples of the first row to the others to clear the first column, $\sim_{2}=$ adding the first row to the third 2 times,
$\sim_{3}=$ adding suitable multiples of the fourth row to the others to clear the fourth column, $\sim_{4}=$ adding the third row to the second 2 times,
$\sim_{5}=$ subtracting the second row from the first 3 times).
Thus, we see that the inverse matrix to the given matrix is the matrix

$$
\left[\begin{array}{cccc}
10 & -9 & -6 & -3 \\
-3 & 1 & 2 & 0 \\
-2 & 4 & 1 & 2 \\
0 & 2 & 0 & 1
\end{array}\right]
$$

