Quiz 7 Solution

1. Determine whether $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in the span of the vectors $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right]$.

Solution:

To be in the span is equivalent to the statement that the vector equation

$$
c_{1}\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

has a solution, so this is what we have to check. We have

$$
\left[\begin{array}{cc|c}
3 & -1 & 1 \\
1 & 3 & 2 \\
4 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 3 & 2 \\
3 & -1 & 1 \\
4 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 3 & 2 \\
0 & -10 & -5 \\
0 & -10 & -5
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 3 & 2 \\
0 & -10 & -5 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 3 & 2 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right] .
$$

Thus, the system is consistent (the right-hand-side column is not a pivot column), hence the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in the span of $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right]$.
2. Find a basis of the null space of the matrix

$$
\left[\begin{array}{cccc}
-1 & 4 & 2 & 5 \\
0 & 1 & 1 & 1 \\
3 & -2 & 4 & -5
\end{array}\right]
$$

Solution: We are just solving the system of homogeneous euations determined by the given matrix. After few row operations, we obtain the row echelon form

$$
\left[\begin{array}{cccc}
-1 & 4 & 2 & 5 \\
0 & 1 & 1 & 1 \\
3 & -2 & 4 & -5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -2 & -5 \\
0 & 1 & 1 & 1 \\
3 & -2 & 4 & -5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -2 & -5 \\
0 & 1 & 1 & 1 \\
0 & 10 & 10 & 10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -4 & -2 & -5 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and so the free variables are x_{3} and x_{4} (that is, third and fourth column are not pivot columns). Treating them as parameters, i.e. setting $x_{3}=r, x_{4}=s$, we have $x_{2}=-r-s, x_{1}=-2 r+s$. That is, all the solutions (i.e. all the vectors in the null space) are of the form

$$
\left[\begin{array}{c}
-2 r+s \\
-r-s \\
r \\
s
\end{array}\right]=r\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

The basis of the nullspace is thus

$$
\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right] .
$$

