
LAB 12

In Lab 4 we discussed techniques for approximating solutions of differential equa-
tions. In this lab be discuss yet another technique for approximating solutions;
Picard iteration. The significance of Picard iteration is that it forms the basis for
one proof of the Existence and Uniqueness theorem. The real purpose of this lab is
to sketch a proof of this fundamental theorem, in the context of a specific example.

Section 1: Integration

MATLAB has several excellent programs for computing integrals; “trapz” “quad”

and “quad8”. These programs compute definite integrals–i.e. they compute
∫ b
a
f(x) dx

where a and b are specific numbers. For the sake of this project, we need to be able
to solve problems such as: graph y over the interval 1 ≤ t ≤ 20 where

(1) y(t) =

∫ t

1

cos s2 ds

However, note that y satisfies the following initial value problem.

dy

dt
= cos t2 y(1) = 0

We can use “ode23” (or “ode45”) to find y. Specifically, we create a function file
called, say, “coss.m”, which describes the function f(t) = cos(t2). We include y as
a variable since ode23 expects a function of both t and y.

function u=coss(t,y)

u=cos(t^2);

We then set

(2) [t, y] = ode23(′coss′, [1, 20], 0);

This computes y over the range 1 ≤ t ≤ 20. To plot the integral, we simply execute
“plot(t,y)”.

We will also need to plot integrals of integrals. For example, suppose that y is
as defined in formula (1) and we set

z(t) =

∫ t

1

y(s) ds

How do we plot z?
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One’s first thought is to execute “[t,z]=ode23(’y’, [1,20],0)”. This, however, will
not work because “y” is a vector, not a function. In fact, [t, y] is a large matrix whose
first column is a sequence of t values and whose second column is the corresponding
y values. However, the following function file (which we call “yy.m”) creates the
required function.

function u=yy (s,x)

global t y

u=interp1(t,y,s);

The “interp1” command tells MATLAB that if s lies between two entries in the t
column, then yy(s) is computed by linearly interpolating between the corresponding
entries in the y column.

The “global” command tells MATLAB that for the sake of computing yy, t and
y have whatever values you have given them in the Command Window. Before
using yy, you must first restart MATLAB and execute the command “global t y”
in the Command Window, which informs MATLAB that you want to make these
variables available to functions.

Finally, to compute the integral of y, you need only execute the command
“[t,y]=ode23(’yy’,[1,20],0);” Note that this will erase the previous values of t and
y. If we need to integrate this result, all we need do is reenter this command.

Exercises for Section 1

(1) Use the techniques described above to plot the function f(t) in part (a)
below over the range 0 ≤ t ≤ 20. Then, evaluate the integral (by hand) and
use “fplot” to plot the answer on the same graph so that you can tell how
well MATLAB is doing. Repeat for part (b).

a) f(t) =
∫ t

0
sin s ds

b) f(t) =
∫ t

0 s
2es ds

(2) For part (b) above, plot the function g(t) =
∫ t

0 f(s) ds using the techniques
described in Section 1 above.

(3) In MATLAB, enter “format long” and then compute cos(seed). Note that
MATLAB calls the answer “ans”. Next compute cos(ans). Next compute
the cosine of this answer. (You need only press the up arrow, followed by
“enter”.) Keep repeating this process, each time taking the cosine of the
previous answer, until the answer seems to stop changing. Notice that you
have succeeded in finding a number xo that satisfies cosxo = xo, at least to
the accuracy of “format long”.

Section 2: Picard Iteration
The process demonstrated in Exercise 3 of Section 1 is called iteration. It is

useful when we are given a continuous function f and we wish to find an xo such
that f(xo) = xo. (Such a number is called a “fixed value” because applying f to it
does not change it.) We start with a some value x1 and set x2 = f(x1), x3 = f(x2)
and, in general xn = f(xn−1). If the xi approach a limit xo, then xo will satisfy
f(xo) = xo.



LAB 12 3

To relate this to differential equations, consider the following initial value prob-
lem:

(3) y′ = t2 + y2 y(0) = yo

Integrating both sides of this equation, and noting that y(0) = yo, we find that y
satisfies the following integral equation.

(6)

y(t)− yo =

∫ t

0

(s2 + y(s)2) ds

y(t) = yo +

∫ t

0

(s2 + y(s)2) ds

Conversely, if y is a continuous function that satisfies equation (6), then y(0) = yo
and differentiation of equation (6) results in equation (3). Thus, equation (6)
is equivalent with equation (3) in the sense that both equations have the same
solutions.

For any continuous function y, let F (y) be the function obtained by substituting
y into the right side of the last equation in (6). Equation (6) is equivalent with
the equality y = F (y). This is a fixed point problem, involving functions rather
than numbers. However, we will approximate our solution in a very similar manner
to what we did for the cosine function. Specifically, we start with the constant
function y1(t) = yo. (Note that y1 satisfies the initial condition in equation (3).)
We compute y2 = F (y1). Specifically

(4) y2(t) = yo +

∫ t

0

(s2 + y2
o) ds

This is the “second Picard iterate.” We then let y3 = F (y2):

(5) y3(t) = yo +

∫ t

0

(s2 + y2(s)2) ds

producing the third Picard iterate. In general, we define yn = F (yn−1). Our hope
is that as n gets large, the yn become better and better approximations to the
actual solution.

Exercises for Section 2

The first series of questions refers to equations (3)-(5).
a) Let yo = seed/10. Use dfield to plot the solution of the initial value problem

(3) over 0 ≤ t ≤ 4, 0 ≤ y ≤ 20.

(1) Use MATLAB to compute and plot (in some color other than yellow) y2 over
the same t interval. (The plot will appear in the dfield window.) (Hint: Use
ode23 to compute the integral in equation (4), calling the output “[t,y]”.
Then enter “y=y+seed/10” .)
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b) Use MATLAB to compute and plot F (y3) in yet another color on the
graph from part (a). (Hint: You need only change the line “u=interp1(t,y,s)”
in the definition of the function yy to “u=sˆ2+interp1(t,y,s)ˆ2” and then
apply ode23 to this function. Don’t forget to add yo onto the integral.)

c) Compute and plot y4, y5 and y6 on this same interval. Do they seem
to be approximating the solution? Get this plot printed. Label the graphs
so as to indicate which Picard iterates are being plotted.

(2) Let yo = seed/10. Transform the following initial value problem into an
integral equation (integrate from 1 to t) and on a single graph plot both the
solution and the first 6 Picard iterates over the range 1 ≤ t ≤ 10.

y′ =
y

t2 + y2
y(1) = seed/10

(3) (This is not a computer exercise.) Picard iterates are also useful in proving
existence and uniqueness for systems. Let A be an nxn matrix and consider
the initial value problem X ′ = AX, X(0) = Xo. Transform this equation
into an integral equation and show that the second Picard iterate is X2(t) =
tAXo +Xo. What are the third and fourth Picard iterates? What is the n
th?

(4) As commented above, our purpose in introducing the Picard iterates is to
discuss the proof of the existence and uniqueness theorem. To this end, we
will consider the initial value problem

(6) y′ = t2 + y2 y(0) = 0

The first, and most essential part of the proof is to show that the Picard
iterates have a limit y. Once this is known, then then we can proceed to
prove that y is continuous and satisfies equation (6), which proves that y
is indeed a solution to our initial value problem. In particular, the solution
exists. The following discussion proves that the limit exists. The rest of the
proof is too long to be considered here.

a) Graph the first three Picard iterates for the initial value problem (6)
over the interval 0 ≤ t ≤ .5. DO NOT graph the solution to the initial value
problem as we are pretending that we do not know it exists. Get your plot
printed.

b) On the graph from the previous exercise sketch in (by hand or by
computer) the line y = t/2. Notice that in the interval 0 ≤ t ≤ .5, the
Picard iterates all lie below this line and above the t-axis. Prove that this
is true for all yi.

(Hint: Since y1(t) = 0 for all t, 0 ≤ y1(t) ≤ .5. It follows that for
0 ≤ s ≤ .5, 0 ≤ s2 + y1(s)2 ≤ .52 + .52 = .5. Use this and equation (6) to
prove that y2(t) lies between the t axis and the line. Once you know the
result for y2, you can repeat this argument for y3, etc.

(5) Prove that for 0 ≤ t ≤ .5, yn+1(t) > yn(t). Hint: Use formula (6) to show
that

yn+1(t)− yn(t) =

∫ t

0

yn(s)2 − yn−1(s)2 ds
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(6) It follows that the sequence of values yn(t) is increasing. An increasing
sequence must either converge or tend to ∞. How does the convergence
follow?


