1. Given that det A = 5 where

find det B where
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Be sure to show all steps in the computation. 10 pts.
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2. Let A be a 4 X 4 matrix which we write as

where A; are the rows of A. Prove the following statement using only
the row scalar, row additive, and row reversal properties of the determi-
nant. You may use other properties only if you first prove them using
the stated properties.
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3. Find a 2 x 2 matrix M such that multiplication by M transforms the
above parallelogram onto itself and transforms (3, 1) onto (1,2). 1/0 pts
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4. Use row reduction to find the inverse of the following matrix A. Other
techniques will not give credit. Be sure to show enough steps so
that I know that you know what you are doing. 10 pts.
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5. Let the transformation T : R® — R? be defined by
T(z,y,2]") = [z +y + 2,3 +2y — 2]".

(a) Use the linearity properties to prove that T' is linear. Other tech-
niques will not be accepted. 10 pts.
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(b) Find a matrix A such that T(X) = AX for all X € R®.
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6. Suppose that A and B are nxn matrices such that A%— 2BA?+51 = 0.
Prove that A is invertible. . 10 pts.
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7. Let A be a 3 x 4 matrix having rank 3. Prove that there is a 4 x 3
matrix B such that AB = I where I is the 3 X 3 identity matrix. Hint:
Write B = By, By, B3] and I = [I1, I, I3] where By, By, Bz and I, I,
and I3 are columns. 10 pts.
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8. In Problem 7, is there only one 4 x 3 matrix B matrix that satisfies
AB = I? Prove your answer in terms of theorems from the text. 5 pts.
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9. You were asked to learn the proof of Theorem 3.10 on p. 188 the text.
One part of this theorem states that if A is an n x n matrix for which
there exists an n x n matrix B such that AB = I then A is invertible
and B = A~ Prove this result using the same argument that was used
in the text. 10 pts.
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10. Let T : V — W be a linear transformation where V and W are vector
spaces. Let {X1, Xa, X3} be a set of three elements in V' such that the

f\{T(X 1), T(X), T(X3)} is hneagbgndependent Prove that the set

{X1, X2, X3} 1s linearly 1ndependent 10 pts.
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