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0. Introduction

A major theme in the study of function theory on bounded domains in C n is the
study of the \boundary values" of holomorphic functions on the Bergman-Shilov
boundary. Often, the study of boundary values involves de�ning a suitable class of
real valued \harmonic" functions. Ideally, such a class should:

(1) Contain all real and imaginary parts of bounded holomorphic functions.
(2) Be describable as \Poisson integrals" over the Bergman-Shilov boundary

against a real kernel (the \Poisson" kernel).
(3) Be invariant under all bi-holomorphisms of the domain.
(4) Be describable as the nullspace HL of a degenerate-elliptic system L of

second order di�erential operators. (We refer to HL as the space of L-
harmonic functions.)

In the literature, at least two classes of harmonic functions and their boundary
behavior have been investigated: the �-harmonic functions, where � is the Laplace-
Beltrami operator and the Poisson-Szeg�o integrals of functions on the Bergman-
Shilov boundary, as de�ned in [H] and [K]. Neither of these classes is entirely
satisfactory in that in general, the �-harmonic functions fail the second condition
and the Poisson-Szeg�o integrals fail the fourth. ([BV]).

In this work, we study several di�erent classes of functions which satisfy some
(possibly weakened) form of the above conditions in the context of bounded homoge-
neous domains in C n . The study of this class of domains is already both interesting
and challenging in that, in general, for such domains, the Bergman-Shilov boundary
is much smaller than the topological boundary and the topological boundary is not
smooth. (c.f. [S1] and [S2]).

We make heavy use of the fact that any such domain is realizable as a Siegel
domain of type I or II. Explicitly, let V � Rn be an open, convex cone which does
not contain straight lines. We assume that the cone V is homogeneous, i.e. there
is an algebraic subgroup S of Gl(n;R) which acts transitively on V via the usual
representation of Gl(n) on Rn. (We denote this representation by �.) S may be
taken to be a triangular subgroup which acts simply transitively on V. Suppose

The �rst two authors were supported by KBN grant 2 P301 051 07 and the third author was
supported by NSF Grant 8505771

Typeset by AMS-TEX



further that we are given a complex vector space Z and a Hermitian symmetric,
bi-linear mapping K : Z �Z ! C

n . We shall assume that

(a)K(z; z) 2 V for all z 2 Z
(b)K(z; z) = 0 implies z = 0

The Siegel domain D associated with this data is de�ned as

D = f(z1; z2) 2 Z � C
n : =z2 �K(z1; z1) 2 Vg:

The domain is said to be type I or II, depending upon whether or not Z is non-
trivial.

The Bergman-Shilov boundary B of D is de�ned as

B = f(z1; z2) 2 Z � C
n : =z2 = K(z1; z1)g:

Suppose further that we are given a complex linear algebraic representation � of
S in Z such that

K(�(s)z; �(s)w) = �(s)K(z;w) for all z;w 2 Z:

The group S acts on D by

(0.1) s(z;w) = (�(s)z; �(s)w):

We let Rn act on D by translation:

(0.2) x(z;w) = (z;w + x); x 2 Rn:

Finally, we let Z act by

(0.3) z0(z;w) = (z + z0; w + 2iK(z; z0) + iK(z0; z0)):

These actions generate a completely solvable group G which acts simply transi-
tively on D. The action of the group G extends to B and the nilpotent group N
generated by transformations (0.2) and (0.3) acts simply transitively on B.

Every bounded homogeneous domain in C n is biholomorphic to a homogeneous
Siegel domain on which the group G described above acts simply transitively. This
group plays a fundamental role in our theory.1

In fact, in [D] and [DH], a general class of solvable lie groups which includes G
were studied. These results apply to the space of bounded L-harmonic functions
for a single, second order, degenerate-elliptic, G-invariant operator L which also
satis�es the H�ormander condition. Following Furstenberg, Guivarc'h and Raugi,
it was shown how to associate with every such operator, a class of boundaries
and, on each boundary, a Poisson kernel PL. It is also proved that every bounded

1The importance of the group G was noticed by Kor�anyi and Stein almost thirty years ago
in their study of the Hardy spaces Hp(D) cf. e.g. [KS1] and [KS2]. Later the group G and its
representations played a fundamental role in the work of Rossi and Vergne, [RV1], [RV2].
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L-harmonic is the integral over the maximal boundary of a function against the
corresponding Poisson kernel. Using these results, we prove the following, which is
one of the main results of the current work:

Let L be a G-invariant, real, second order operator which satis�es the H�ormander
condition and annihilates holomorphic functions on a homogeneous Siegel domain
D. The Shilov-Bergman boundary B is one of the boundaries associated with L.
Let PL be the corresponding Poisson kernel on B. Then every bounded holomorphic
function F on D is the Poisson integral F = PL(f) of the boundary values f of F
on D.

Moreover,

For every homogeneous Siegel domain there exists an operator L as above for
which the maximal boundary is B.

In fact, for a given homogeneous domain there are many such operators.
Taken together, the above results imply that the space of L-harmonic functions

satisfy conditions (1)-(4) stated above, except that in condition (3), invariance un-
der the full automorphism group of the domain is replaced by the weaker condition
of invariance under the transitive group G. On the other hand, condition (4) is
strengthened{harmonicity is de�ned in terms of the nullspace of a single di�eren-
tial operator. This may be viewed as a characterization of the Bergman-Shilov
boundary by means of a di�erential operator suggested by E. M. Stein many years
ago.

If the operator L were invariant under all of Aut (D), then of course the stronger
form of condition (3) would follow. It general, however, it seems that the algebra
of Aut (D)-invariant di�erential operators may be just the algebra generated by
�, the Laplace-Beltrami operator for the Bergman metric on D. In general, the
�-harmonic, bounded functions are not reproducible from their boundary values
on the Bergman-Shilov boundary, except if D is a product of balls. Thus, it seems
that in order to retain condition (3), we are forced to consider invariant systems
of di�erential operators. In this work, following an idea suggested to us by Nolan
Wallach, we de�ne a canonical system HJK (the Hua system) in terms of a con-
traction of @@ against the curvature tensor. Our main result concerning this system
is:

For every homogeneous Siegel domain, there exists a canonical system which we
call the Hua system and denote HJK. The space of HJK harmonic functions
HHJK is Aut (D)-invariant and every bounded function F in HHJK is a Poisson
integral PHKJ(f) of a bounded function f on B.

For the Poisson kernel PHJK one can take the Poisson kernel PL on B corre-
sponding to any G-invariant operator L which is subelliptic and is a linear combi-
nation of the elements of the system HJK. In particular, we may use the Laplace-
Beltrami operator � as L.

Therefore,
Every bounded, HJK-harmonic function is the integral over the Bergman-Shilov

boundary of a uniquely determined bounded function against the Poisson kernel for
�.

3



In the case that D is a Hermitian symmetric tube domain, our HJK system
is the one which Johnson and Kor�anyi [JK], generalizing earlier work by Hua [H,
de�ned. However, the kernel PHJK is equal to the standard Poisson-Szeg�o kernel
PS on B (cf. [H] and [K]) i� D is a Hermitian-symmetric tube domain.

It might appear that the Laplace-Beltrami operator plays a special role in this
theory. This, in fact, is not the case. It is possible to de�ne a whole class of elliptic,
second order, di�erential operators for which our results hold. In fact, there are
cases where � does not provide the sharpest results. Explicitly, we show that

For the tube domain over the cone of real, positive de�nite n� n matrices there
exists a single G-invariant elliptic second order di�erential operator �0 such that
the functions in H�0 are precisely the Poisson-Szeg�o integrals of bounded functions
on the Bergman-Shilov boundary. The operator �0 is a linear combination of the
"diagonal" elements of HJK.

For n = 2 Malliavin and Kor�anyi [KM] (cf. also [J1] and [J2]) exhibited a system
L of two G-invariant operators for which HL consists of Poison-Szeg�o integrals of
L1 functions on the Bergman-Shilov boundary.

For an arbitrary symmetric domain Berline and Vergne [BV] exhibited a third
order Aut (D)-invariant system L for whichHL consists of Poison-Szeg�o integrals of
L1 functions on the Bergman-Shilov boundary. In [D] and [DH] some probabilistic
tools are used so restriction to the second order degenerate elliptic operators is
necessary. This also explains why we are unable to go beyond second order systems
in the present paper.

Our proofs are inductive, relying both on the characterization of bounded ho-
mogeneous domains as Siegel domains of type I and II due to [PS], as well as the
structure theory of homogeneous cones due to [V]. We also, of course, use the results
of [DH].

Section 1. The Hua Operators

In this section, we de�ne the Hua operators in general and compute them in the
context of a bounded homogeneous domain.

Let D be a K�ahlerian manifold and let T be the (real) tangent bundle for D.
(We shall not need to indicate its dependence on D in our notation.) We assume
that the reader is familiar with the basic properties of K�ahlerian manifolds and
their Riemannian connection. (See e.g. [He]). Let

Tc = T 10 � T 01

be the decomposition of Tc into holomorphic and anti-holomorphic vector �elds.
(Tc is, of course, the complex tangent bundle.) We have a similar decomposition

T �c = (T �)10 � (T �)01

where (T �)ij is the annihilator of T ji in T �c . Hence, (T
�)ij is the dual space of T ij .

We de�ne an operator @@ : C1(D) ! �((T �)10 
 (T �)01) in local holomorphic
coordinates by

@@f =
@2f

@zj@zi
dzi 
 dzj
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(It is easily seen that this is independent of the choice of coordinates.)
Now, let g be the Riemannian structure for D and let O denote the corresponding

Riemannian connection. For a C1 function f we de�ne a 2-tensor by

O
2f(X;Y ) = (XY � OXY )f

Then, on a K�ahlerian manifold we have the following:

(1.1) Lemma. For all f 2 C1(D), @@f = O2f jT 10 � T 01

Proof This follows immediately from the above formula for O2f and the obser-
vation that for all i and j,

OZj
Zi = 0 and OZj

Zi = 0

where Zj =
@

@zj
. (See the material below formula (12), p. 292 in [He]).

A usual, we de�ne the curvature operator by

R(X;Y ) = OXOY � OY OX � O[X;Y ]

where X and Y are complex vector �elds. We interpret R as a End (Tc; Tc) valued
two form on D. (We extend O to Tc by complex linearity.) We also extend g to
the complex tangent bundle by complex linearity. We shall let H be the Hermitian
form on Tc de�ned by

H(Z;W ) =
1

2
g(Z;W ):

Let fE1; : : : ; Eng � T 10 be a local orthonormal frame for T 10 (orthonormal with
respect to H). For f 2 C1(D), we de�ne

(1.2) HJK(f) = �
X

@@f(Ei; Ej)R(Ei; Ej)jT 01

It is easily seen that this is independent of the orthonormal frame.
It is clear that HJK annihilates holomorphic functions. The next lemma will

establish that HJK is real in the sense de�ned in the introduction.

(1.3) Lemma. For all Z and W in �(T 01) and all f 2 C1(D),

H(HJK(f)Z;W ) = H(Z;HJK(f )W ):

Proof This follows from formula (1.2) along with the observations that, for all
U , V , Z and W in �(Tc),

H(R(U; V )Z;W ) = H(Z;R(V ;U)W ):
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and, for all Z and W 2 �(T 01),

@@f (W;Z) = @@f (Z;W ):�

The next proposition establishes that every Hua-harmonic function is in the
kernel of �, where � is the Laplace-Beltrami operator.

(1.4) Proposition. For all f 2 C1(D),

Tr HJK(f) = �(f):

Proof We note �rst that for all Z and W in T 01
x ,

Tr Rx(Z;W )jT 10
x = �rx(Z;W ):

where r is the Ricci curvature. (This formula follows easily from formula (5), p289
of [He] along with the identity Rk

lij� = Rk
ilj� = �Rk

ij�l where the notation is as in

[He], loc. cit.)
From Proposition 3.6, p.300 of [He], along with formula (1.2) above, we see that

(1.5) Tr HJK(f) = 2
X

@@f(Ei; Ej)H(Ei; Ej) = 2
X

@@f(Ei; Ei):

On the other hand, it is known that �f is the contraction of O2f ([O], p. 86.)
It is easily seen from Lemma (1.1) that this is exactly the quantity on the right. �

Our next goal is to compute a formula for HJK in the case that D is a bounded
homogeneous domain. Thus, in view of [PS] and [V] we may assume that there
is a connected, simply connected Lie group G which acts simply transitively on D
and that this action is real analytic in the G-variable and is holomorphic in the D
variable. We let xo be a �xed base point in D.

Let G denote the Lie algebra of G. In general, we shall adopt the convention
that upper case Roman letters will be used to denote Lie groups and that the
corresponding upper case script letter will automatically denote the corresponding
Lie algebra.

The complex tangent space (Tc)xo may be identi�ed with Gc and G-invariant
vector �elds on D with left-invariant vector �elds on G. The set of elements X in
Gc which annihilate holomorphic functions at xo is denoted by P. Clearly P is a
complex subalgebra of Gc. Since left translation preserves holomorphic functions, a
vector �eld X 2 P is a section of the bundle T 01. We let Q = P. The vector �elds
valued in Q de�ne the sections of the bundle T 10.

Note that since Tc = T 10 � T 01, we have

Gc = P �Q

6



Let �Q be the projection to Q along P. For each Z 2 P, we de�ne an operator
M(Z) : Q! Q by

(1.6) M(Z)(X) = �Q([Z;X]):

To compute the HJK operator, we must compute the connection. Notice that
for X 2 �(T 10), Z 2 �(T 01), and f any (local) holomorphic function

OZX(f) = OXZ(f) + [X;Z]f = [X;Z]f

since the torsion is zero and the conection preserves holomorphic type. It follows
that

(1.7) OZX(f) = �([X;Z])(f)

where � is the projection to T 10 along T 01 in Tc. Hence OZX(f) = �([X;Z]). In
particular, for Z 2 P, X 2 Q we have

OZX =M(Z)(X):

Since the connection is real, we may also state that

OXZ =M(X)(Z);

where
M(X)Z =M(X)Z:

We will also need to know the connection on other types of forms. Since the
Riemannian structure is invariant, the form g is de�ned by a scalar product g on
G and H is de�ned, as above, by a Hermitian scalar product (still called H) on Gc.
For Z 2 Q, de�ne an operator M�(Z) : Q ! Q by the identity

H(M�(Z)X;Y ) = H(X;M(Z )Y )

where X and Y range over Q. Thus, M�(Z) is the adjoint in H of M(Z).

(1.8) Proposition. Let Z and X be elements of Q. Then

OZX = �M�(Z)(X):

Proof On a K�ahler manifold, the connection preserves holomorphic types. There-
fore, OZX is of type (1; 0). Furthermore,

OZX = OZX

We compute:
ZH(X;Y ) = H(OZX;Y ) +H(X;OZY ):
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for Y 2 �(T 10). But for X, Y G-invariant, ZH(X;Y ) = 0, and so

H(OZX;Y ) = �H(X;OZY ) = �H(X;M(Z )Y ) = �H(M�(Z)X;Y ):�

Again, since the connection is real, we may write

OZX = OZX = �M�(Z)X

where M�(Z)X =M�(Z)X .
Next, we compute the curvature. Our result is:

(1.9) Theorem. For X and Z in Q and W 2 P, the form R de�ned below is
the curvature tensor at the identity e of G.

R(Z;W )X = �[M�(Z)M(W ) �M(W )M�(Z) +M�(M(W )Z) +M(M(Z)W )]X

Proof It follows easily that at e

(OZOW � OWOZ)X = (�M�(Z)M(W ) +M(W )M�(Z))X

Also,
[Z;W ] = OZW �OWZ =M(Z)W �M(W )Z

It follows that at e

R(Z;W )X = (�M�(Z)M(W ) +M(W )M�(Z)�M(M(Z)W ) �M�(M(W )Z)X:

This proves our formula.

Section 2. Hua operators on type I Domains

The Siegel domain of type I associated with a homogeneous regular cone V (as
described in the introduction) is the domain in C n de�ned by

E = R
n+ iV:

i.e. for such domains the space Z is trivial. Let S an algebraic subgroup S of
Gl(n;R) which acts transitively on V via the usual action of Gl(n) on Rn. It is
a result of [V] that S may be taken to be a triangular subgroup which acts simply
transitively on V. We may also assume that S contains tI for all t 2 R+. We shall
let c 2 V be a �xed base point.

The group S acts on E by matrix multiplication. We let M = Rn thought
of as a commutative Lie algebra. The corresponding Lie group M is Rn under
addition. This group acts on E by translation. These two actions generate a simply
transitive subgroup G of the automorphism group of E. The group G is the semi-
direct product G =M �s S where the S action on M is matrix multiplication. We
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shall identifyM and S with the corresponding subalgebras of G and hence, M and
S with subgroups of G.

Let � be the representation of S on Rn de�ned by letting S act on Rn by matrix
multiplication. We shall also let � denote the action of the Lie algebra S on R

n

obtained by di�erentiating �. Since S acts simply transitively, the mapping � of S
into Rn de�ned by

�(X) = �(X)c

is a vector space isomorphism. We extend � and � to Sc by complex linearity. Then
we have the following:

(2.1) Lemma. P = f(�(Y ); iY )jY 2 Scg.

Proof We consider E � Rn�Rn. Then the tangent space at ic is Rn�Rn. The
tangent space is also identi�ed with G =M�s S. The identi�cation is de�ned by
mapping (X;Y ) 2 G into (X;�(Y )) 2 Rn�Rn. Under this identi�cation, the space
de�ned in the statement of the lemma maps onto the Cauchy-Riemann operators,
proving the lemma.�

It follows that the complex structure on the tangent space is de�ned by the
mapping J : (�(X); Y )! (��(Y );X).

There is an algebraic description of the general homogeneous cone which is due
to Vindberg which we shall require. We de�ne a product � on S by the equality

X�Y = ��1(�(X)�(Y )c)

Since � is a Lie algebra representation, it is easily seen that for all X and Y in S,
X�Y � Y�X = [X;Y ]:

The operation just introduced is useful in describing the operator M introduced
above. Let X = (i�(B); B) 2 Q and Z = (�i�(A); A) 2 P. Then

[Z;X] =(i�(A)�(B) + i�(B)�(A); [A;B])

=(i�(A)�(B); A�B) � (�i�(B)�(A); B�A)

In view of (1.7) it follows that

(2.2) M(Z)X = (i�(A�B); A�B):

Our next goal is to explicitly compute the operator M�(Z)X for Z 2 Qo. For
this, we shall also require an algebraic description of the Riemannian structure of
the domain. Assume, for the moment, that the Riemannian structure in question
is that derived from the Bergman metric. Since this structure is G-invariant, it
is de�ned by a scalar product g on the Lie algebra G. Koszul ([Kl], Formula 4.5)
proved the existence of a functional � 2 G� such that this scalar product is given
by

(2.3) g(X;Y ) = �([JX; Y ]):
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This functional has a very simple description in terms of the \normal decomposi-
tion" of S, which will be explained after Proposition (2.6). Since g is J-invariant,

(2.4) �([JX; JY ]) = ��([J2X;Y ]) = �([X;Y ])

We shall not explicitly use any other information concerning � other than the fact
that formula (2.3) de�nes a J-invariant, positive-de�nite, scalar product. Proving
our results in this generality seems necessary in order to carry out the inductive
portion of the proof (see Section 6).

Notice that for all A and B in S

g((0; B); (0; A)) = �([(��(B); 0); (0; A)]) = �((�(A�B); 0)) = �(A�B);

where � 2 S� is de�ned by
�(A) = �((�(A); 0)):

Note that one consequence of the above is that the expression

(A;B) = �(A�B)

de�nes a scalar product on S.
Using formula (2.4) and the fact that M is abelian, it is easily seen that � is

zero on [S;S]. MoreoverM and S are orthogonal. This easily implies:

(2.5) Lemma. For X = (i�(A); A) and Z = (i�(B); B),

H(Z;X) = �(A�B):

To describe M�, we shall require the `dual' product on S. We de�ne a product
`�' on S by the equality

(A�B;C) = (B;A�C):

This product is, in fact, the `�' product on S induced from the dual cone, although
we shall not require this fact.

Now, let X = (i�(A); A) 2 Q and Z = (i�(B); B) 2 Q. Then we have the
following proposition which follows easily from formula (2.2).

(2.6) Proposition. M�(Z)X = (i�(B�A); B�A):

To obtain more precise results, we shall need to use the structure theory of clans
due to Vindberg. Let r be the rank of S. (The dimension of the maximal torus in
S.) Vindberg proves (Proposition 8, p.374) that S has a `normal decomposition'.
This means that there is a direct sum decomposition

S = �
X

1�i�j�r

Sij
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where
(2.7) For each 1 � i � r, Sii is spanned by a single element eii such that

eii�eii = eii.
(2.8) For 1 � i � j � k,

Sij�Sjk � Sik and

Sjk�Sik + Sik�Sjk � Sij :

(2.9) Sij�Skl = fOg if j 6= k and j 6= l.
(2.10) Let i < j and let sij 2 Sij . Then

eii�sij =
1

2
sij = ejj�sij

sij�ejj =sij :

(2.11) The functional � is zero on Sij for i < j, and by de�nition, �(eii) =
g(eii; eii). Therefore � is zero on

P
i<j �(Sij )� S.

We refer to the above properties as the `properties of the normal decomposi-
tion'. In fact (2.11) can be derived easily from (2.7)-(2.10), the orthogonality of
the decomposition G =M�S and the invariance of g under J . To understand the
meaning of (2.7)-(2.11), it helps to keep the following example in mind.

(2.12) Example: 1 Let X be the set of n � n, real, symmetric matrices and
let V � X be the cone of positive de�nite matrices. The group S of all invertible
upper-triangular matrices with positive diagonal acts simply transitively on V by
means of the representation � de�ned by

�(S)X = SXSt:

The di�erentiated representation of S then is given by

�(A)X = AX +XAt:

We choose c = I as our base point. Then

�(A) = �(A)I = A+At:

If B 2 S, then B�A is de�ned by

B�A = ��1(�(B)(A +At)) = ��1(B(A +At) + (A +At)Bt):

The space Sij are just the space of matrices which are non-zero only in the (i; j)
position. The elements eii are the diagonal matrices which have 1=2 in the (i; i)
entry and all other entries zero. The functional � may be taken to be the trace.
The properties for the normal decomposition are easily veri�ed in this case.

We shall also need information on how � interacts with the normal decomposi-
tion. This is most easily stated in terms of the spaces
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Tij = Sr�j r�i:
The following is a simple consequence of the observation that the normal decom-
position is an orthogonal decomposition.

(2.13) Proposition. The operation � satis�es the properties of the normal
decomposition with respect to the spaces Tij .

One requirement for the boundary theory which we utilize is a detailed knowl-
edge of the root structure of G. This too is readily obtained from the normal
decomposition. Let A � S be the span of the eii and let

N =
X
i<j

Sij :

Then N is the unipotent radical for S and A is the maximal torus for both S and
for G. Let � 2 A�. Then � is said to be a root if there are non-zero X such that
for all D 2 A,

[D;X] = �(D)X:

Such X are called root vectors. We shall let M� and N� denote, respectively, the
spaces of the root vectors for � inM and in N . The set of all roots will be denoted
R.

Let f�1; �2; : : : ; �rg � A� be the dual basis to the eii basis. We shall leave the
following to the reader:

(2.14) Proposition. Let i � j. If Sij 6= 0, then both (�i + �j)=2 and (�i �
�j)=2 are roots. The corresponding root spaces are, respectively, �(Sij ) � M and
Sij � S.

Now we shall introduce some notation. Let ci = �(eii). Also, for i < j, we let
dij be the dimension of Sij . We choose a basis e�ij for Sij such that

(e�ij ; e

ij) = ��;ci:

This basis turns out to be more convenient than an orthonormal basis due to the
following:

(2.15) Lemma. For i < j,

e�ij�e

ij = ��eii:

Proof Since Sii is one dimensional, e�ij�e

ij = ceii for some scalar c. Furthermore

cci = �(e�ij�e

ij) = (e�ij ; e


ij ) = ci��;:

This proves the lemma.�

12



Next, we shall require an orthonormal basis for Q. For this, we de�ne, for all
i � j,

(2.16) E�
ij = (Y �

ij +
p�1X�

ij)=
p
ci

where

Y �
ij =(0; e

�
ij )

X�
ij =(�(e

�
ij ); 0):

(If i = j, we interpret � = 1 and e�ii = eii) It follows easily from Lemmas (2.5) and
(2.15) that the E�

ij de�ne an orthonormal basis for Q.
Considered as vector �elds on E, the elements E�

ij form an orthonormal frame

�eld for T 10. We may therefore compute the HJK operators from formula (1.2).
Actually, it turns out that we only require the `strongly diagonal' HJK operators.
These are the operators de�ned by

(2.17) HJKmf = H(HJK(f)Emm ; Emm):

Our main result of this section is the following:

(2.18) Theorem.

HJKm = c�1m (�m � dm + 2

cm
Ymm �

X
i<m

dim
ci

Yii)

where dm =
P

m<j dmj and

�m =
X
i�m;�

c�1i ((Y �
im)

2 + (X�
im)

2) +
X
m�j;�

c�1m ((Y �
mj )

2 + (X�
mj )

2):

Proof From Lemma (1.1) and Theorem (1.9),

HJK(f)m =
X

f�;�ij;klC
�;�
ij;kl

where

C�;�
ij;kl =�H(R(E�

ij ; E
�

kl)Emm; Emm)

=H(M(E
�

kl)Emm;M(E
�

ij)Emm)�H(M�(E�
ij)Emm;M

�(E�
kl)Emm)

+H(M(M(E�
ij )E

�

kl)Emm; Emm) +H(M�(M(E
�

kl)E
�
ij)Emm; Emm):

(2.19)

and
f�;�ij;kl = [E

�

ijE
�
kl �M(E

�

ij)E
�
kl]f

13



The sum is over all indecies with 1 � i � j � r, 1 � � � dij , 1 � k � l � r and
1 � � � dkl.

Our �rst observation is that if (i; j; �) 6= (k; l; �), then C�;�
ij;kl = 0. In fact,

each term in formula (2.19) is zero. (This follows from the normal decomposition
properties, Propositions (2.6), (2.14) and the observation that the Sij spaces are
mutually orthogonal.)

Next, we shall record a series of formulae which the reader may readily verify.
We set

Zi = Eii=
p
ci = c�1i (Yii +

p�1Xii):

For i < j

M(E
�

ij)Emm =
�j;mp
cm

E�
im

M�(E�
ij)Emm =

�i;mp
cm

E�
mj

M(E
�

ij)E
�
ij =

1p
ci
Eii = Zi

M(M(E�
ij )E

�

ij)Emm =
�i;m
cm

Emm

M�(M(E
�

ij)E
�
ij)Emm =

�i;m
cm

Emm

It follows that for i � j

C�;�
ij;ij =

1

cm
(�j;m � �i;m + 2�i;m) =

1

cm
(�j;m + �i;m)

and

(2.20) f�;�ij;ij = (E
�

ijE
�
ij � Zi)f:

We sum the terms with indecies (m; j), j � m and (i;m), i � m separately. Note
also that for each pair (i; j) there are dij possible values of �. Note also that dii = 1.
We get

cmHJKm = ~�m � dm + 2

cm
(Ymm +

p�1Xmm)�
X
i�m

dim
ci

(Yii +
p�1Xii)

where dm =
P

m<j dmj and

~�m =
X
i�m;�

E
�

imE
�
im +

X
m�j;�

E
�

mjE
�
mj :

From Lemma (1.3), HJKm(f ) = HJKm(f). Thus, HJKm is a real operator.
Taking real parts proves the desired formula.�

14



Our proof of our main theorem will be an inductive argument based upon the fact
that every bounded, homogeneous domain may be built up from a lower dimensional
domain. To explain this, we introduce two subalgebras of S. We de�ne,

S1� =
X

1�m�d

S1m

S>1 =
X

2�i�j�d

Sij

Clearly, S1� is a Lie ideal in S and S>1 is a complimentary Lie subalgebra. We
de�ne subspaces of Rn by

M1� = �(S1�) and M>1 = �(S>1):

Then, M1� is S invariant under �. We identify M>1 with the quotient Rn=M1�.
The image V>1 in M>1 of the cone V is a cone which is homogeneous under
S=S1� = S>1. (See [V].) It follows that

G>1 =M>1S>1 � G

acts simply transitively on the tube domain over V>1. We use the functional
�>1 = �jG>1 to de�ne the Riemannian structure on G>1. Let HJK>1 be the
corresponding Hua system for G>1.

We shall identify G>1 with the quotient G=G1� where

G1� =M1�S1�:

Note that G1� is normal in G. This identi�cation allows us to consider functions
on G>1 as functions on G which are constant on cosets of G1�. Under these identi-
�cations, the strongly diagonal Hua operators on G reduce to those on G>1 in the
sense of the lemma below. This lemma is a direct consequence of Theorem (2.18).

(2.21) Lemma. Let HJK>1 be the Hua system for G>1 under the Riemannian
structure de�ned above. Then, for all f 2 C1(G) which are constant on G1� cosets,

(HJK>1)mf = HJKm+1(f)

for all r �m � 2. �

Section 3. Hua Operators on Type II Domains

Let D be a Siegel domain of type II as described in the introduction (nontrivial
Z). The group G generated by the actions (0.1), (0.2), (0.3) may be algebraically
described as follows. Let � = =K. We let M = Z �Rn with the Lie structure

[(z1; t1); (z2; t2)] = (0; 4�(z1; z2)):

15



The corresponding group is M with the product

(z1; t1) � (z2; t2) = (z1 + z2; t1 + t2 + 2�(z1; z2)):

However, following our convention of denoting Lie groups by upper case Roman
letters, we shall denote this space by M when it is considered as a group. This
matches with the notation for tube domains, which correspond to the case Z = 0.
From now on M will be understood in this larger sense.

Let G =M �sS where s(z; t)s�1 = (�(s)z; �(s)t). Then, G is a completely solv-
able group which acts simply transitively on D. The corresponding identi�cation
of G with D is de�ned by

(3.1) ((z; t); s) ! (z; t + i�(s)c+ iK(z; z)):

We shall let T = Rn �s S � G. Note that T is the group of the Type I domain
E = Rn+ iV. The Lie algebra of T will be denoted by T .

We identify the tangent space of D at ic with G. Let J : G ! G de�ne the
complex structure. From formula (3.1), it is easily seen that J : T ! T and on this
set acts as described below Lemma (2.1). It also follows from formula (3.1) that on
Z, J is just multiplication by i. Next, we assume that the Riemannian structure
may be de�ned by a formula such as formula (2.3) above where � 2 G� . Notice
that then �jT de�nes a Riemannian structure for T .

As before, we shall also let � denote the representation of S in Z obtained
by di�erentiating �. Since (by assumption) � is algebraic, we know that �(A)
is diagonalizable over R. Thus, we may decompose Z into a direct sum of root
spaces for A under �. Let f�1; �2; : : : ; �kg be the set of root functionals in A�. The
following is well known. We include the proof for sake of completeness.

(3.2) Lemma. Let �i be as above Proposition (2.14) Then

f�1; �2; : : : ; �kg � f�1=2; �2=2; : : : ; �r=2g:

Proof Let Z 2 Z be a root vector for A under � corresponding to the root
functional � 2 A�. Then, U = K(Z;Z) is a non-zero root vector for � corresponding
to 2� . It follows from Proposition (2.14) that � = (�i + �j)=4 for some choice
of i � j. We need to show that necessarily, i = j. Suppose that i < j. Let
X = ��1(U) 2 Sij . Then for all A 2 A,

�(A)�(X)Z = �([A;X])Z + �(X)�(A)Z = (A)�(X)Z

where

 = (�i � �j)=2 + � =
3

4
�i � 1

4
�j :

We know from the previous paragraph that such a functional cannot be a root for
�. Hence �(X)Z = 0. But then �(X)U = 0. We obtain our contradiction by noting
that then X�X = ��1(�(X)�(X)c) = ��1(�(X)U) = 0, proving that X = U = 0
and hence that Z = 0. �

16



From now on R,M�, N� de�ned before Proposition (2.14) will be understood in
this more general situation i.e. whenM = Z�Rn. We assume that our Riemannian
structure is de�ned via a functional � 2 G� as in formula (2.3) above.

(3.3) Corollary. The functional � is zero on Z.

Proof Let A 2 A and Z 2 Z. Then JA 2 �(S). Hence

�([A;Z]) = �([JA; JZ]) = 0:

Our corollary follows since, from Lemma (3.2), Ad A maps Z onto Z.�

We let Zi denote the root space corresponding to �i=2 in Z. Then

Z =
X

Zi:

Furthermore, in L,

(3.4) [Zi;Zj ] �Mij :

(Recall that Mij = �(Sij)).
The subalgebra Q is the set of all elements

X �p�1JX

where X 2 Gc. For each i, we de�ne Qi to be the set of all elements X �p�1JX
as above where X 2 (Zi)c. For any pair of indecies (i; j), we de�ne Qij to be the
set of such elements where X 2 (Mij)c. Clearly, the spaces Qij and Qi together
span Q. Furthermore, the space

QT =
X

Qij

is the algebra which we called Q in the last section relative to the domain E. Let
fi be the complex dimension of Qi.

For any subscript �, we de�ne P� = Q�. Then, from formula (3.4),

(3.5) [Qi;Pj ] � (Mij)c = Pij +Qij :

Indeed, let X 2 Qi, Y 2 Qj . Then

H(X;Y ) =
1

2
g(X;Y ) =

1

2
�([JX; Y ]) = 0:

One immediate conclusion is that the spacesQi are mutuallyH-orthogonal, because
� is zero on Mij for i < j.

We choose a basis for Q consisting of

(a) The basis E�
ij for QT de�ned in formula (2.16).

(b) An H-orthonormal basis Z�
j = X�

j �
p�1Y �

j for each Zi where 1 � � � fi
and X�

j and Y �
j are real.
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It is clear that this de�nes an orthonormal basis for Q. We shall use this basis to
compute the Hua operators. Again, though, we are only interested in the strongly
diagonal Hua operators. These are still de�ned by formula (2.17). The analogue of
Theorem (2.18) for a Siegel II domain is the following

(3.6) Theorem. Let HJKT
m be the operator de�ned as HJKm in Theorem

(2.18). Then, for the case at hand,

HJKm = HJKT
m + c�1m (

X
�

(X�
m)

2 + (Y �
m)

2 � fm
cm

Ymm):

Proof It is clear that from formula (2.19),

HJKm = HJKT
m +

X
f�;i;j C�;

i;j

where

C�;
i;j =H(M(Z



j )Emm;M(Z
�

i )Emm)�H(M�(Z�
i )Emm;M

�(Z
j )Emm)

+H(M(M(Z�
i )Z



j )Emm; Emm) +H(M�(M(Z


j )Z
�
i )Emm; Emm):(3.7)

and
f�;i;j = [Z

�

i Z

j �M(Z

�

i )Z

j ]f

To get (3.7) one has to prove that H(R(E�
ij ; Z

�

l )Emm; Emm) = 0, which is an easy
but a tedious calculation based on two facts:

(3.8) M(Z
�

l )E
�
ij = 0

and

(3.9) M(E
�

ij)Z
�
k � (Zk)c:

Indeed, since P is a subalgebra, we have

M(Z
�

l )E
�
ij = �Q[Z

�

l ; Y
�
ij + iX�

ij ] = �Q[Z
�

l ; Y
�
ij � iX�

ij ] = 0:

Analogously

�Q[E
�

ij ; Z
�
k ] = �Q[E

�
ij; Z

�
k ] = [E�

ij ; Z
�
k ];

which for i = j is included in (Zk)c and for i < j belongs to the root space
�i��j

2 + �k
2 , which is zero.

We claim that C�;
ij = 0 unless i = j = m and � = . Furthermore, in this case

we get c�1m .
To prove this, let X = A �p�1JA be an element of QT where A 2 A. Then,

JA 2 M and hence

[X;Z
�

i ] = [A� iJA;Z
�

i ] = [A + iJA;Z
�

i ] 2 P:
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It follows that
M(X)Z�

i and M(Z
�

i )X = 0;

In particular, the �rst term to the right of the equality in formula (3.7) is zero.

Next, from formula (3.5), we note that M(Z
�

i )Z
�
j belongs to Qij . Hence, the

third term on the right in formula (3.7) will be zero unless i = j = m. The same
is true for the fourth term since this term is just the conjugate of the third. The
following lemma clearly �nishes the proof of our claim. In fact, this will also �nish
the proof of Theorem (3.6).�

(3.10) Lemma.

M(Z
�

m)Z

m =

��;p
cm

Emm

M�(Z�
i )Emm =

�imp
cm

Z�
m:

Proof For the �rst equality, we note that �(Smm) is one dimensional. Hence,
from formula (3.4) there is a complex constant C�; such that

(3.11) [Z
�

m; Z

m] = C�;Xmm:

Computing this constant is simple. If we apply � to both sides of the above, we
�nd that

2H(Z
m; Z

�
m) = �([JZ

m; Z
�

m]) = �iC�;cm

Thus,

C�; =
2i

cm
��; :

On the other hand, from formula (2.16),

Xmm =
�ipcm

2
(Emm �Emm):

The �rst equality follows by applying �Q to formula (3.11).

For the second equality, recall that, by (3.8), M(Z
�

i ) is zero on QT . It follows
that M�(Z�

i )Emm is H-orthogonal to QT and hence belongs to Zc. Also

H(M�(Z�
i )Emm; Z


j ) = H(Emm;M(Z

�

i )Z

j ):

This is zero unless i = j =m, in which case, the �rst part of the lemma proves our
result.�

Section 4. Alternative reproducing kernels for holomorphic functions

In this section we consider G-invariant real second order elliptic degenerate op-
erators L on D, which annihilate holomorphic functions. We are going to apply the
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boundary theory of [DH] in order to show that there are many real kernels on M ,
which reproduce holomorphic functions.

Let L be a real (i.e. Lf = Lf ) second order operator which annihilates holo-
morphic functions and x0 2 D a �xed base point. In local coordinates around x0
we have

(4.1) L =
X

ckj
@

@zk

@

@zj
;

with cjk = ckj . Therefore writing L in terms of partial derivatives
@

@xk
,

@

@yk
we

obtain an operator with real coe�cients, and being elliptic degenerate means that
the second order symbol of L is positive semi-de�nite.

Since, additionally, L is G-invariant, we may write it in terms of left-invariant
vector �elds on G. The identi�cation (3.1) of G with D de�nes global coordinates

for G. Let Xk be the left-invariant vector �eld on G which equals
@

@zk
at e in these

coordinates. In view of Lemma (1.1) we have

L =
X

ckj(X kXj � OXk
Xj) =

X
ckj(X kXj �M(X k)Xj);

where We choose a basis of Q as in the previous section. Let fE�
ijg, 1 � i � j � r,

1 � � � dij be the basis for QT and fZ�
j g, 1 � j � k, 1 � � � fj , the basis for Z.

Therefore,

L =
X

C�;�
ij;kl(E

�

ijE
�
kl �M(E

�

ij)E
�
kl) +

X
C�;�
i;j (Z

�

i Z
�
j �M(Z

�

i )Z
�
j )

(4.2)

+
X

C�;�
ij;k(E

�

ijZ
�
k �M(E

�

ij)Z
�
k ) +

X
C�;�
i;kl (Z

�

i E
�
kl �M(Z

�

i )E
�
kl):

The condition Lf = Lf implies that L belongs to the enveloping algebra of G i.e
can be written as

L = Y2
1 + :::+ Y2

m + Y0
for some Y0; :::Ym 2 G.

For the rest of the paper we assume that L satis�es the H�ormander condition i.e

(4.3) Y1; :::;Ym generate G as a Lie algebra

The same condition is satis�ed by �A(L), where �A(L) is the image of L under the
canonical homomorphism � : S ! A = G=MN , i.e �A(L) is elliptic. Since the
second order part of �A(L) is equal to

rX
i;j=1

C�;�
ii;jjY

�
ii Y

�
jj =

rX
i;j=1

Cii;jjYiiYjj
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we have

(4.4) C�;�
ii;ii = Cii;ii > 0:

In order to determine the Poisson boundary for L we need to know the A-
component Y0 of the �rst order part of L. For this, we compute the contribution

of each term in (4.2). In view of (3.8) and (3.9), M(Z
�

i )Ekl = 0 and M(E
�

ij )Z
�
k 2

(Zk)c. Hence
H(M(E

�

ij)Z
�
k ; Emm) = 0

and
H(M(Z

�

i )Z
�
j ; Emm) = 0:

Moreover M(Z
�

i )Z
�
j 2 Qij and by Lemma (3.10)

M(Z
�

i )Z
�
i =

��;�p
ci
Eii:

By orthogonality of P and Q, Lemma (3.10) and (2.2)

H(M(E
�

ij)E
�
kl; Emm) = �((Y �

ij�Y
�
kl)�Ymm);

which, in view of the properties of �, is nonzero if and only if � = �, i = k, j = l
and m = i. Then, we have,

M(E
�

ij)E
�
ij =

1p
ci
Eii:

Therefore

(4.5) L = L0 � Y0;

where

Y0 =

rX
i=1

1

ci
(
X
j�i;�

C�;�
ij;ij +

X
�

C�;�
i;i )Yii:

We claim that for every 1 � i � r

(4.6)
X
j�i;�

C�;�
ij;ij +

X
�

C�;�
i;i > 0:

Since L has a nonnegative second order symbol, Lf(x0) � 0 for f having minimum
at x0. Let, in local coordinates around x0, f =j zj j2. Then in the notation of (4.1)

Lf(x0) = cjj
@

@zj

@

@zj
j zj j2= cjj :

Hence C�;�
ij;ij ; C

�;�
i;i � 0 and so, (4.4) implies (4.6).
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The following proposition sums up our considerations

(4.7) Proposition. A G-invariant, real, second order operator L on D, which
annihilates holomorphic functions and satis�es the H�ormander condition, can be
written in the form

(4.8) L = L0 �
rX

m=1

bmYmm;

where bm > 0 and L0 is a left-invariant second order operator with the �rst order
part contained in M�N .�

Notice that both the Laplace-Beltrami operator � and the `diagonal Laplacian'

�diag =
X
m

HJKm

belong to the class of the operators described in Proposition (4.7). The �rst state-
ment follows from formula (1.5) and for the second from (2.17) and Lemma (1.3).

The vector Y0 will play a special role in our discussion. We wish to apply the
boundary theory of [DH] to operators described in Proposition (4.7). We let R+

denote the set of roots � such that

�(Yo) > 0

and R� = R nR+. (This set corresponds to �1(L) on p.8 of [DH]). Note that our
Yo is �Zo in the notation of [DH].)

It is important to notice that R+ is non-empty. In fact, it is clear from Propo-
sition (2.14) that for all i � j such that Sij 6= 0,

(�i + �j)=2 2 R+:

Also
�i=2 2 R+:

The root spaces corresponding to these functionals spanM. We let

N+ =
X
�2R+

N�

and
N� =

X
�2R�

N�:

In the notation of [DH], loc. cit., N0(L) = N� and N1(L) =M�N+. Note that
both N� are subalgebras of S.

Since
S = N+N�A
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the homogeneous space B = G=N�A is identi�able with the nilpotent Lie group
MN+. We refer to B as the maximal boundary for L. With this identi�cation M
is contained in it. Let dx be Haar measure onMN+. According to the main result
of [DH], there exists a bounded, positive, C1 function P on B such that

(4.9) Z
P (x)dx = 1:

(4.10) For all L1 functions f on B, the function

F (g) =

Z
B

f(gx)P (x) dx

satis�es LF = 0. (Here, x! gx denotes the action of G on the coset space
G=N�A.)

(4.11) If F is a bounded solution to LF = 0, then there is a unique L1 function
f on B which expresses F as above. This function is called the boundary
value of F .

Finally we have

(4.12) Proposition. There is a choice of constants in (4.2) such that the max-
imal boundary for L is M . In particular, the Poisson kernel for such L reproduces
holomorphic functions in the sense of (4.9)-(4.11).

Proof We consider L of the form

L =
X

C�;�
ij;ij(E

�

ijE
�
ij �M(E

�

ij)E
�
ij ) +

X
C�;�
i;i (Z

�

i Z
�
i �M(Z

�

i )Z
�
i );

which is clearly elliptic if all C�;�
ij;ij and C�;�

i;i are greater then 0. Hence we have to

�nd positive C�;�
ij;ij and C

�;�
i;i such that

(4.13) (�i � �j)(Y0) =

� 1

ci
(
X
k�i;�

C�;�
ik;ik +

X
�

C�;�
i;i ) +

1

cj
(
X
k�j;�

C�;�
jk;jk +

X
�

C�;�
j;j ) � 0;

for i < j, which is very easy. Assume we can satisfy (4.13) for i < i0 and all
j > i. To get (4.13) for i = i0 and j > i0 we increase C

�;�
jk;jk and C�;�

j;j su�ciently,

which does not change positivity of (�i � �j)(Y0) for i < i0. �

It turns out that all L from Proposition (4.7) give rise to reproducing kernels on
M , although their maximal boundaries may be larger. For that we have to explain
the idea of a boundary for L and consider not only the maximal boundary but also
the smaller ones. We shall say that a subalgebra N 0 of N is homogeneous if it is
normalized by A. For any such algebra, there is an A-invariant subspace N 1 of N
such that

N = N 1 �N 0:
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Let N 0 � N� be some homogeneous subalgebra of N . Then, according to [DH],

Theorem (4.7), the homogeneous space ~B = G=N0A is a boundary for L. This

means that there is a probability measure ~P on G=N0A such that the functions

(4.14) F (g) =

Z
G=N0A

f(gx) ~P (x)dx; f 2 L1(G=N0A)

are L-harmonic. ~P is closely related to P .

Clearly M = G=S is a boundary for L. Let PM be the corresponding Poisson
kernel. We are going to prove that PM reproduces bounded holomorphic functions.
This is not totally obvious unless B = G=S and PM = P .

The boundary ~B can be realised as MN1, N1 = expN 1, with an appropriate
action of G. Indeed, the mapping

(4.15) MN1 �N0 3 (x1; x0)! x1x0 2MN

is a di�eomorphism between MN1 �N0 and MN and so, every x 2 MN can be
written in a unique way as

x = x1x0; x1 2MN1; x0 2 N0:

We have a well de�ned projection �N1
:MN !MN1, given by

�MN1(x) = x1:

In this terms (4.14) becomes

(4.16) F (g) =

Z
MN1

f(�MN1 (gx)) ~P (x)dx; f 2 L1(MN1)

and x! �MN1(gx) is the action of G onMN1 corresponding to the action x! gx

in ~B = G=N0A realization.

(4.15) follows from a more general fact. One can obtain this kind of decom-
position of a connected and simply connected nilpotent Lie group as far as the
assumptions of the following lemma are satis�ed.

(4.17) Lemma. Let a nilpotent Lie algebra N = N1�N0 be a sum of two linear
subspaces N1 and N0. Assume that we can �nd a basis E1; :::; En of N such that
every Ej belongs either to N1 or to N0 and, in coordinates x = exp(x1E1 + ::: +
xnEn), the multiplication in N = expN is given by

(xy)i = xi + yi + Ti(x1; :::; xi�1; y1; :::; yi�1)

with Ti 2 C1(N) independent of xi; :::; xn; yi; :::; yn. Then

expN1 � expN0 3 (x1; x0)! x1x0 2 N
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is a di�eomorphism. �

For the proof of Lemma (4.17), which by all means is standard, see e.g. the
preliminaries of [DH]. Although Lemma (4.17) is not formulated there in the above
form, the proof is essentially the same as the proof of Lemmas (1.21), (1.22), (1.25)
there. In every such situation we are going to consider the corresponding projections
�1N and �0N .

In view of Lemma (4.17) we can decompose N+ as

N+ = N1N2;

where N2 = expN2 and N2 = N+ \N 0. Notice that N2 is a subgroup. Moreover,
in view of (4.16) we have

(4.18) ~P (x) =

Z
N2

P (xy)dy; x 2MN1:

Indeed, identifying f 2 Cb(MN1) with a continuous bounded function on MN
constant on the right cosets of N0, we have

F (g) =

Z
MN1�N2

f(�MN1N2(gxy))P (xy)dxdy;

(4.19)

=

Z
MN1�N2

f(�MN1(gxy))P (xy)dxdy =

Z
MN1

f(�MN1(gx))
� Z

N2

P (xy)dy
�
dx:

On the other hand,

F (g) =

Z
MN1

f(�MN1 (gx)) ~P (x)dx;

which proves (4.18). In particular,

(4.20) PM (x) =

Z
N+

P (xy)dy; x 2M:

Now we are ready to formulate the main result of this section

(4.21) Theorem. Let L, L1 be G-invariant (not necessarily distinct), real,
second order operators on D, which annihilate holomorphic functions and satisfy
the H�ormander condition. Assume that the maximal boundary for L1 is M . Let
PM be the L-Poisson kernel on M , and F a bounded function, which is at the same
time L and L1 harmonic. Then there is f 2 L1(M) such that

(4.22) F (g) =

Z
M

f(�M (gx))PM (x)dx:
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In particular, bounded holomorphic functions are reproducible from their boundary
values on M via the kernel PM .

Remark. The last chapter of the paper will be devoted to the proof of an
analogous theorem with the Hua diagonal operators playing the role of L1. This
involves somewhat more work because, except for the case of the tube over the cone
of symmetric real r � r matrices (see the next section), it is not known whether
or not there is a linear combination of Hua diagonal operators which satis�es the
hypotheses of L1.

For the proof of both theorems we need a technical lemma, which will be formu-
lated and proved below. Before that we must introduce some notation. Elements
of Cb(B) are de�ned by right N�-invariant continuous functions on MN , while

elements of Cb( ~B) are de�ned by right N0-invariant functions. We say that an

element of Cb(B) `reduces' to ~B if it is de�ned by a right N0-invariant function on
MN . In this case, as in (4.19), we may write

(4.23)

F (g) =

Z
MN+

f(�MN+(gx))P (x) dx

=

Z
MN1�N2

f(�MN+ (gx1x2))P (x1x2)dx1dx2

=

Z
MN1

f(�MN1(gx1)) ~P (x1)dx1:

Let Y 2 A. We say that Y is contractive on G if ad Y has only non-negative
eigenvalues. In this case, we let N 0

Y be the span of the positive eigenspaces in
M + N and N 1

Y be the centralizer of Y in M + N . Note that N 0
Y is an ideal in

M+N .

(4.24) Lemma. Let F be a bounded, L-harmonic function. Assume that the
L-boundary value f is continuous on the maximal boundary B =MN+. Let Y 2 A
be contractive. Then

lim
t!�1

F ((exp tY )g) = FY (g)

converges uniformly on compact sets in G and de�nes an L-harmonic function with
continuous boundary function fY . Both FY and fY are constant on right cosets of
N0
Y in G and in MN respectively. Additionally, fY and f agree on N1

Y \MN+.
If f reduces to G=AN0, then fY will reduce to G=AN 0, where N 0 is the subgroup
generated by N0

Y and N0.

Proof Given g 2 G, we write

g = an1Y n
0
Y

relative to the decomposition G = AN1
YN

0
Y . ( The assumptions of Lemma (4.17)

are clearly satis�ed because N 1
Y , N 0

Y together contain all of the eigenspaces of
ad Y .) We de�ne

g(t) = (exp tY )g(exp�tY ):
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Then
g(t) = an1Y n

0
Y (t)

Let
I1 = N1

Y \MN+ and I0 = N0
Y \MN+:

Notice that also I1, I0 are composed of the whole eigenspaces and so

MN+ = I1I0:

Then

(4.25) F (exp tY ) =

Z
I1

�Z
I0
f(x1x0(t))P (x1x0) dx1

�
dx0:

When t! �1 then x0(t)! e and (4.25) converges to

(4.26)

Z
I1
f(x1) ~P (x1) dx1;

where
~P (x1) =

Z
I0
P (x1x0) dx0:

More generally, for g 2 G,

F ((exp tY )g) = F (an1Y n
0
Y (t)(exp tY ))

=

Z
I1

�Z
I0
f(�MN+(an1Y n

0
Y (t)x

1x0(t)))P (x1x0) dx1
�
dx0:

As t! �1, n0Y (t)! e, x0(t) ! e and we see that

(4.27) FY (g) =

Z
I1
f(�MN+(an1Y x

1)) ~P (x1) dx1 =

Z
I1
f(�I1 (an

1
Y x

1)) ~P (x1) dx1:

The convergence of the limit as well as the fact that FY is constant on right cosets
of N0

Y follows.
Each of the functions g ! F ((exp tY )g) is L-harmonic since L is left invariant.

Our limit will converge in the C1c topology due to the hypoellipicity of L [B].
From formula (4.26) and formula (4.27), fY is the function on MN de�ned by

fY (x
1x0n�) = f(x1)

for all x1 2 I1, x0 2 I0 and n� 2 N�, so the agreement of fY and f is proved.
Both functions will be considered as functions onMN constant on N� right cosets.
Writing x 2MN as

x = x1x0n� x1 2 I1; x0 2 I0; n� 2 N�;
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for y 2 N0
Y we have

fY (x
1x0n�y) = fY (x

1x0n�y(n�)�1n�)

= fY (x
1x0n�y(n�)�1) = f(x1) = fY (x

1x0n�);

which proves that fY is right N0
Y invariant as a function on MN . Finally, suppose

that f is constant on right cosets of N0 where N0 is a homogeneous subgroup of
N . Since N0 is homogeneous, we see that

N0 = (N0 \ (MN+))(N0 \N�) = (N0 \ I1)(N0 \ I0)(N0 \N�):

Now since N0
Y is a normal subgroup of N and fY is right N0

Y and N� invariant,
for y 2 N0, we have

fY (x
1
Y x

0
Y y) = fY (x

1
Y yy

�1x0Y y) = fY (x
1
Y y):

Now decomposing y as

y = y1y0y� y1 2 I1; y0 2 I0; y� 2 I�

we obtain
fY (x

1
Y y) = fY (x

1
Y y

1) = f(x1Y y
1) = fY (x

1
Y x

0
Y ):

We see that fY is constant on all N0 right cosets. Since fY is also constant on N0
Y

cosets, we see that it is constant on N 0 cosets, proving the lemma.�

Proof of Theorem (4.21). Let

Y =
X

Yii:

Then N1
Y = S and N0

Y = M . Let F be a bounded L and L1 harmonic function
with continuous L-boundary value f onMN+ (MN+ being the maximal boundary
for L). Hence FY is an L1-harmonic function which is constant on cosets of M in
G. Therefore FY may be considered as a function on S harmonic with respect to
�S(L1), which by (4.9)-(4.11) and (4.13) has a trivial maximal boundary and so
FY is constant. Lemma (4.24) then says that fY is constant and so f is constant
on N1

Y = S. Applying the same argument to left translates of F shows that f is

constant on right cosets of S. Indeed, let ~F (g) = F (g1g). Then by (4.16) (with

N1 = N+) the boundary value ~f of ~F satis�es

(4.28) ~f (x) = f(�MN+(g1x)); x 2MN+:

But when both f , ~f are considered as N� right invariant functions on N , (4.28)
becomes

~f(x) = f(g1x); x 2MN:

Therefore, by (4.23), f reduces toM . This proves Theorem (4.21) in the case where
the boundary value is continuous.

28



Actually, the general case of Theorem (4.21) also follows. If F is an arbitrary
L and L1-harmonic function and � 2 C1c (MN+) then the convolution F�(g) =
� � F (g) = R

MN+ �(x)F (x
�1g) dx is L, L1-harmonic with continuous boundary

value � � f . (See Lemma (4.9) of [DH].) Hence, � � f treated as a function on
MN is constant on S-cosets. Letting � range over an approximate identity proves
Theorem (4.21).�

Section 5. Tube domain over the cone of symmetric positive de�nite r � r
matrices.

In this section let D be the tube domain over the cone of symmetric positive
de�nite r � r matrices. By � we denote the Laplace-Beltrami operator on D. For
a sequence of strictly positive numbers a = (a1; :::; am) let

La =
rX

m=1

amHJKm

be a linear combination of strongly diagonal Hua operators. We are going to prove
that the operators La havingM as the maximal boundary play a special role on D
{they characterize the classical Poisson-Szeg�o integrals from the Shilov boundary.
This means that a bounded function is a Poisson-Szeg�o integral if and only if it isLa-
harmonic. Unfortunately this nice characterization is not true for other symmetric
tube domains because then there are no La having M as the maximal boundary.

We begin by proving the existence of La which have the M as their maximal
boundary. In the case of the cone of symmetric, positive de�nite, r � r matrices,
cj =

1
2
, dij = 1 and dm = r �m, and so the strongly diagonal Hua operators have

the form

HJKm = 4(
1

2
�m � (r + 2�m)Ymm �

X
i<m

Yii):

(5.1) Lemma. There is a choice of a1; :::; ar such that the maximal boundary
for La is M .

Proof Let Y = �Pr
m=1 am((r + 2 �m)Ymm +

P
i<m Yii): We need a1; :::; ar

such that

(5.2) (�i � �j)(Y ) � 0 for i < j:

We start with �i � �r, i < r. Then

(�i � �r)(Y ) = �(�i � �r)(2arYrr + arYi +
X

i<m<r

amYi) = ar �
X

i<m<r

am:

Whenever am < ar
r
, m = 1; :::; r � 1, (5.2) is true. Assume we can satisfy (5.2) for

j > m. We have

(�i��m)(Y ) = (�
X
j>m

aj(Yi+Ym)�am((r+2�m)Ym+Yi)�
X

i<j<m

ajYi�ai(r+2�i)Yi)
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= am(r+2�m)�am�
X

i<j<m

aj�ai(r+2�i) = am(r+1�m)�
X

i<j<m

aj�ai(r+2�i):

Clearly making aj , i � j < m small enough we can satisfy (5.2) for j =m.�

Remark. The above lemma is not true for other symmetric tube domains i.e.
when dij = 2; 4; 8.

Let P�
M be the �-Poisson kernel on M while P a

M be La-Poisson kernel on M .
The main theorem of this section is

(5.3) Theorem. Let La be as above with the maximal boundary being M . For
a bounded function F the following are equivalent

(5.4) There is f 2 L1(M) such that F (g) =

Z
M

f(�M (gx))P�
M (x) dx

(5.5) LaF = 0:

Moreover, for all such La the kernel P a

M is equal to P�
M .

Remark. The proof relays heavily on the Johnson-Kor�anyi result [JK] saying
that for a bounded F , (5.4) is equivalent to be Hua harmonic.

Proof Implication (5.4)!(5.5) follows directly from the result of Johnson-Kor�anyi
mentioned above. For the converse we �rst prove that P a

M = P�
M . For a function

f 2 Cc(M) let

(5.6) P�
Mf(g) =

Z
M

f(�M (gx))P�
M (x) dx:

Since P�
Mf is La-harmonic, in view of Theorem (3.8) of [DH] there is h 2 L1(M)

such that

(5.7) P�
Mf(g) = P a

Mh(g) =

Z
M

h(�M (gx))P a

M (x) dx:

Convolving (5.6) and (5.7) from the left by � 2 Cc(M) we have

P�
M (� � f)(g) = P a

M (� � h)(g):

Indeed,

P�
M (� � f)(g) =

Z
M

Z
M

�(y�1)f(y�M (gx))P�
M (x) dydx

=

Z
M

�(y�1)P�
Mf(yg) dy =

Z
M

�(y�1)P a

Mh(yg) dy = P a

M (� � h)(g):
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Let now g(t) = exp t
P

Yii. Letting t!�1 we see that

� � f(e) = � � h(e):

This proves f = h and

(5.8) P�
M = P a

M :

Now if LaF = 0 holds for a bounded function F then by Theorem (3.8) [DH]

F = P a

Mf

for an f 2 L1(M), which, in view of (5.8), implies (5.4).�

Section 6. Hua harmonic functions

The main result of this section is the following

(6.1) Theorem. Let F be a bounded function on G annihilated by strongly
diagonal Hua operators and harmonic with respect to an operator L satisfying the
assumptions of Proposition (4.7). Then there is f 2 L1(M) such that

(6.2) F (g) =

Z
M

f(�M (gx))PM (x) dx;

where PM is the L-Poisson kernel on M .

Remark. Clearly, we could use �diag as L in (6.1). In this case, any F which
is annihilated by the Hua system is automatically annihilated by L since �diag

is the sum of the strongly diagonal Hua operators. Thus, we produce a single
Poisson kernel which is capable of representing Hua harmonic functions. We �nd
the more general formulation of Proposition (6.3) remarkable, however, in that the
maximal boundary of L would typically be considerably larger than M . The above
proposition says that just being Hua harmonic forces the L-boundary function to
reduce to a smaller boundary.

To prove Theorem (6.1) we need the following proposition:

(6.3) Proposition. Suppose that a bounded function F is annihilated by the
strongly diagonal Hua operators and, together with its L-boundary function f , is
constant on cosets of M in G. Then F is a constant function.

Once Proposition (6.3) has been proved, then Theorem (6.1) will follow as in the
proof of Theorem (4.21).

To prove Proposition (6.3), we let f be the (continuous) L-boundary function
for F . By assumption, F and f are now constant on cosets of M . E�ectively, we
may ignore M and consider all the functions and the operators as functions and
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operators on S. This means that F is �S(L)-harmonic and instead of the Hua
operators �m, m = 1; :::; r we have

�S(�m) = c�1m (
X
i�m;�

c�1i (Y �
im)

2+
X
m�j;�

c�1m (Y �
mj )

2�dm + fm + 2

cm
Ymm�

X
i<m

dim
ci

Yii):

Therefore, now our goal is to prove

(6.4) Proposition. Suppose that bounded �(L)-harmonic function F is anni-
hilated by �(�m), m = 1; :::; r. Then F is constant.

To prove Proposition (6.4) we have to formulate Lemma (4.24) in a more gen-
eral situation. Let S = NA be a semi-direct product of a connected and simply
connected nilpotent Lie group N and the group A = Rr with a diagonal action of
A on N . Let L = Y2

1 + :::+Y2
m+Y0 be a left-invariant operator on S satisfying the

H�ormander condition with the maximal boundary N=N� identi�ed, as in section
4, with N+, N+ =

P
�2R+N�, N� =

P
�2R�N�. Let Y 2 A. We say that Y is

contractive on S if ad Y has only non-negative eigenvalues as an automorphism
of N . We let N 0

Y be the span of the positive eigenspaces in N and N 1
Y be the

centralizer of Y in N . In this setting Lemma (4.24) is true and we formulate it here
again for the readers convenience.

(6.5) Lemma. Let F be a bounded, L-harmonic function on S. Assume that
the L-boundary value f is continuous on the maximal boundary N+. Let Y 2 A be
contractive. Then

lim
t!�1

F ((exp tY )g) = FY (g)

converges uniformly on compact sets in S and de�nes an L-harmonic function with
continuous boundary function fY . Both FY and fY are constant on right cosets of
N0
Y in S and in N respectively. Additionally, fY and f agree on N1

Y \ N+. If f
reduces to N=N0, then fY will reduce to S=N 0, where N 0 is the subgroup generated
by N0

Y and N0.�

Still in the above general setting, we have.

(6.6) Lemma. Let N=N0 be a boundary for L identi�ed, as in section 4, with
N1 being a complement to N0 in the sense of N = N1N0. Assume that

F (s) =

Z
N1

f(�N1(sx)) ~P (x) dx

and Y 2 A + N 0 centralize N 1. Then F is constant under right translation by
exp tY for all t 2 R.

Proof The proof is immediate, because

�N1(s exp tY x) = �N1(sx exp tY ) = �N1(sx):�
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Let N+ be the maximal boundary for �(L) and F a bounded
�(L)-harmonic function. Its boundary function f de�ned originally on N+ is

extended to N by

(6.7) f(x+x�) = f(x+)

and considered as a function on N .
We assume by induction that Proposition (6.4) is known for all domains of rank

less than r.

(6.8) Lemma. The function f is constant on cosets of N>1 in S, where N>1 =
S>1 \N .

Proof We apply Lemma (6.5) with Y = Y11. Then N1
Y is exactly N>1 and N0

Y

is N1� = S1� \ N . The function FY is annihilated by �S(�m), m = 1; :::; r and
is constant on cosets of N1� in S. From Lemma (2.21), FY is annihilated by the
image under �S of strongly diagonal HJK>1 operators, and hence, by induction,
is constant. Lemma (6.5) now shows that f is constant on N>1. By the same
argument, all left translates of f are also constant on cosets of N>1 (as in the proof
of Theorem (4.21)), proving the lemma.�

Now, we shall introduce r + 1 sets of functions. We de�ne

Fr+1 = fxF : x 2 Ng:

and
Fr+1 = fxf : x 2 Ng:

Clearly Fr+1 is the set of boundary values of functions from Fr+1 considered as
functions on N . Indeed, if

F (s) =

Z
N+

f(�N+(sy+))P (y+) dy+

then

F (xs) =

Z
N+

f(�N+(xsy+))P (y+) dy+

so f 0(y+) = f(�N+ (xy+) is the boundary function of xF on N+. Extending f 0 to
N , by (6.7) we have

f 0(y+y�) = f(�N+ (xy+)) = f(xy+) = f(xy+y�)

so f 0 =x f .
We then de�ne

(6.9) Fk = fxFk : Fk(s) = lim
t!1

Fk+1((exp tYkk)s); Fk+1 2 Fk+1g;

for 1 � k � r. We shall prove shortly that these limits converge in the C1c topology
on G. Granted this, Fk is a set of L-harmonic (and Hua harmonic) functions on G

33



which is also invariant under left translation. Let Fk denote the set of L boundary
values of functions from Fk. Then Fk is also invariant unde the left action of G.

First we prove existence of the limits in (6.9). For k = r, the limit exists in
C1c from Lemma (6.5) (applied to �Yrr). It is constant on cosets of the normal
subgroup Nr = expNr, where

Nr =
X

1�i<r

Sir :

The same is satis�ed by the elements of Fr. Note that �Y(r�1)(r�1) is contractive
on N=Nr. Therefore Lemma (6.5) applied to S=Nr proves the existence of Fr�1.
Let

Nk =
X

i<j;k�j

Sij

and
Nk = expNk:

Nk is a normal subgroup of N . It similarly follows by induction applied to the
quotient group S=Nk+1 that the limit in (6.9) exists in C1c for all k and elements
of Fk are constant on cosets of the normal subgroup Nk. Furthermore, the same
holds for boundary functions from Fk. Moreover, suppose that Fk 2 Fk and that
Fk+1 is related to Fk as in (6.9) and that the corresponding boundary functions are
fk and fk+1 respectively. Then fk equals fk+1 on N<k = expN<k, where

N<k =
X

1�i<j<k

Sij :

From Lemma (6.8), fk is also constant on cosets of N>1.
Proposition (6.4) clearly follows from the following:

(6.10) Lemma. Each Fk 2 Fk is constant for 3 � k � r + 1.

Proof Our proof will be inductive. For F3 2 F3, since F3 is constant on cosets
of N3 we have:

0 = c1HJK1(F3) = (2c�11 Y 2
11 + c�11

X
�

(Y �
12)

2 � d1 + 2 + f1
c1

Y11)F3

(6.11)

0 = c2HJK2(F3) = (2c�12 Y 2
22 + c�11

X
�

(Y �
12)

2 � d2 + 2 + f2
c2

Y22 � d12
c1

Y11)F3

(6.12)

Both
Pr

1 Y ii and Yii, i � 3, centralize N<3. Hence, by Lemma (6.6), for i � 3,

YiiF3 = 0

(Y11 + Y22 + � � �+ Yrr)F3 = 0:
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Hence,
Y11F3 = �Y22F3:

We substitute this relation into formula (6.12) and subtract the result from formula
(6.11), getting

(2(c�11 � c�12 )Y 2
11 � (

d1 + 2 + f1 � d12
c1

+
d2 + 2 + f2

c2
)Y11)F3 = 0:

If c1 = c2, then Y11F3 = 0. (Note that d1 � d12.) In particular,

(Y 2
11 +

X
�

(Y �
12)

2 + Y11)F3 = 0:

Then according to [DH] the maximal boundary for Y 2
11 +

P
�(Y

�
12)

2 + Y11 on S=N3

is trivial, so F3 is constant on N<3 and, hence, on S.
If c1 6= c2, then we conclude that there is a nonzero constant � such that

(Y 2
11 + �Y11)F = 0

(Note that d1+2+f1�d12
c1

+ d2+2+f2
c2

> 0). Hence, solving a simple di�erential equation
we see that there are constants � and � such that for all s 2 S.

F3(g(exp tY11)) = (� + �e��t)F3(g):

Boundedness forces � = 0 and, hence, Y11F3 = 0. We see as above that F3 is
constant.

Now, suppose by induction that we have shown that each Fk 2 Fk is constant.
It follows that each fk 2 Fk is constant on N<k. But since Fk, Fk are closed under
left translations, fk+1 is constant on right cosets of N<k. Thus, the boundary
function fk+1 for Fk+1 reduces to N=N 0 where N 0 is some homogeneous subgroup
containing N>1, N<k and Nk+1. We may choose a homogeneous compliment to N 0

contained in
N1k:

From Lemma (6.6),
Y Fk+1 = 0

for any Y 2 N>1 +N<k +Nk+1, which centralizes N1k. In particular,

YijFk+1 = 0

for all 1 � i � j < k, j 6= 1. The above formula is also true for k + 1 � j � r since
Fk+1 is constant on cosets of Nk+1. For 1 < i < k, the equation ciHJKi(Fk+1) = 0
says exactly that

(6.13) (c�1i
X
�

(Y �
ik)

2 � d1i
c1

Y11)Fk+1 = 0:

35



For i = k we obtain:

(6.14) (2c�1k Y 2
kk +

X
1�i<k;�

c�1i (Y �
ik)

2 � dk ++fk + 2

ck
Ykk � d1k

c1
Y11)Fk+1 = 0

As before, (
P

Yii)Fk+1 = 0. Hence

Y11Fk+1 = �YkkFk+1:

Then, from formula (6.13) and formula (6.14), Fk+1 is annihilated by the operator:

(6.15) 2c�1k Y 2
11 + c�11

X
�

(Y �
1k)

2 + (
d1k
c1

+
dk + fk + 2

ck
�
X
i<k

d1i
c1

)Y11

Finally, from HJK1, we see that Fk+1 is also annihilated by

(6.16) 2c�11 Y 2
11 + c�11

X
�

(Y �
1k)

2 � d1 + f1 + 2

c1
Y11:

Subtracting (6.16) from (6.15) we see that

(6.17) (2(c�1k �c�11 )Y 2
11+(

dk + fk + 2

ck
+
d1k
c1
�
X
i<k

d1i
c1

+
d1 + f1 + 2

c1
)Y11)Fk+1 = 0

Moreover, since d1 >
P

i<k d1i, the coe�cient by Y11 in (6.17) is strictly positive.
As in the F3 case, it follows that Fk+1 is constant on right cosets of the group

whose lie algebra is generated by Y11 and Y �
1k. Since this function is also constant

on right cosets of N 0, we see that fk+1, and hence Fk+1 is constant, as desired.�

This �nishes the proof of Proposition (6.4) and hence of Theorem (6.1).
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