
THE PALEY-WIENER THEOREM FOR THE HUA SYSTEM

Section 1: Introduction

One of the more beautiful results in the harmonic analysis of symmetric spaces
is the Helgason Theorem, which states that on a Riemannian symmetric space
X = G=K, a function is annihilated by the algebra DG(X) of all G-invariant
di�erential operators if and only if it is the Poisson integral of a hyperfunction over
the \maximal" boundary. (See [KKMOOT].)

If X is a Hermitian symmetric space, then one is typically interested in complex
function theory, in which case one is interested in functions whose boundary values
are supported on the Shilov boundary rather than the maximal boundary. In this
case, it turns out that the algebra of G invariant di�erential operators is not neces-
sarily the most appropriate one for de�ning harmonicity. Johnson and Kory�ani [JK],
generalizing earlier work of Hua [Hu], Kory�ani -Stein [KS], and Kory�ani-Malliavin
[KM], introduced an invariant system of second order di�erential operators (the
HJK system) de�ned on any Hermitian symmetric space. They showed that any
function that is annihilated by this system (i.e. any Hua-harmonic function) is the
Poisson integral of a hyperfunction over the Shilov boundary. They also showed
that in the special case that X is a tube domain, all Poisson integrals are Hua-
harmonic. Thus, in the tube case, the Hua system plays the same role with respect
to the Shilov boundary as the algebra DG(X) does with respect to the maximal
boundary. (Later, Lassalle ([La1] and [La2]) showed the existence of a smaller real
system with the same properties as the Jhonson-Kory�ani system. This smaller
system will not, however, play a role in the current work.)

In the general Hermitian symmetric case, it is not true that all Poisson integrals
are Hua-harmonic. In [BV], Berline and Vergne commented that the boundary
values of the Hua-harmonic functions should satisfy some \tangential" Hua equa-
tions. They also produced an invariant system of third order operators with the
property that a function f is the Poisson integral of a hyperfunction over the Shilov
boundary if and only if f is annihilated both by the Berline-Vergne system and by
DG(X). Arguably, however, the Hua system is perhaps more appropriate for the
study of analytic function theory than the Berline-Vergne system since it is sim-
plier and de�nes a smaller class of boundary functions. (Both systems annihilate
holomorphic functions.)

Every Hermitian symmetric space is, of course, a K�ahler manifold. In [DHP2] it
was noted that the HJK system is de�nable on any K�ahler manifoldX. This more
general system is invariant under any bi-holomorphic isometry of the manifold. It
seems interesting to ask to what extent the results of Johnson and Kory�ani depend
on the semi-simplicity of the the space and to what extent they are special cases of
results valid for a larger class of K�ahlerian manifolds. Speci�cally, one is interested
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in the following questions.

(1) Given a K�ahlerian manifold X, is there a Poisson kernel on the Shilov
boundary for X with the property that every function which is annihilated
by the HJK system on X is the Poisson integral of a hyperfunction over
the Shilov boundary?

(2) If the answer to the �rst question is a�rmative, can we describe the space
of boundary functions for HJK?

In the light of the Helgason theorem, it is natural to restrict initially to ho-
mogeneous K�ahler manifolds. Then a result of Dorfmeister and Nakajima [DN]
states that the general such manifold decomposes as a �ber bundle over a bounded
homogeneous domain in Cn where the �bers are homogeneous K�ahler manifolds
of a particularly simple type. Thus, it is natural to restrict further to the class
of bounded homogeneous domains in Cn. Note that this class still contains all
Hermitian symmetric manifolds.

Question (1) was studied in [DHP2] where it was shown that in the bounded-
homogeneous case there is indeed a \Poisson" kernel on the Shilov boundary that
reproduces the Hua-harmonic functions. In fact, it was shown that the Shilov
boundary is a boundary (in the sense of [DH]) for the Laplace-Beltrami operator
of the domain and that the Poisson kernel for this operator on the Shilov bound-
ary su�ces to reproduce the Hua-harmonic functions. It should be noted that
the Laplace-Beltrami operator is a linear combination of operators from the Hua
system so the Hua-harmonic functions are, in particular, harmonic for the Laplace-
Beltrami operator. Typically, the maximal boundary for this operator is larger
than the Shilov boundary ([DHP1]). Thus, the main content of the theorem for
the HJK system just mentioned is that the boundary values for the HJK system,
which initially exist only on the maximal boundary, are actually supported on the
(smaller) Shilov boundary.

In the case of a symmetric domain, the Poisson kernel for the Laplace-Beltrami
operator is easily computable in terms of the complex structure of the domain.
Speci�cally, let S(z;w) be the Szeg�o kernel function for the domain. (This is the
reproducing kernel for H2.) Then, in this case, S extends almost every where in w
to the Shilov boundary and the function

P (z; x) =
jS(z; x)j2

S(z; z)

where z belongs to the domain and x to the Shilov boundary, is the Poisson kernel
for the Laplace-Beltrami operator. This function is called the Cauchy-Szeg�o Poisson
kernel

For a non-symmetric domain, the Cauchy-Szeg�o Poisson kernel is not the Poisson
kernel for the Laplace-Beltrami operator. In fact, it is known that the Cauchy-
Szeg�o Poisson kernel is harmonic for the Laplace-Beltrami operator if and only if
the domain is symmetric [Xu]. There is, to our knowledge, no general formula
for the Laplace-Beltrami kernel outside of the symmetric case. This then tends to
diminish the utility of the result mentioned above concerning the reproducibility of
the Hua-harmonic functions from the boundary.

The �rst main result of this work is the remarkable statement that the Cauchy-
Szeg�o Poisson kernel also reproduces Hua-harmonic functions. Thus, the two most



THE PALEY-WIENER THEOREM FOR THE HUA SYSTEM 3

natural candidates for a Poisson kernel, the Cauchy-Szeg�o Poisson kernel and the
Laplace-Beltrami Poisson kernel, both work equally well for the Hua-Harmonic func-
tions. This is all the more remarkable when one realizes that in the non-symmetric
case, the Hua system does not annihilate the Cauchy-Szeg�o Poisson kernel. (Recall
that the Laplace-Beltrami operator is a linear combination of operators from the
Hua system.) Thus, there is no a priori reason to expect a connection between the
Hua system and the Cauchy-Szeg�o Poisson kernel. It should also be noted that
there is a considerable body of information relating to the Cauchy-Szeg�o Poisson
kernel (See, for example, [DHP1].)

The non-uniqueness of the reproducing kernel of course means that the space
of boundary values of the Hua-harmonic functions cannot be dense in L1 of the
boundary. Thus, a complete understanding of the Hua-harmonic functions requires
describing the space formed by their boundary values. The second major result of
this work is a characterization of the space of L2 boundary values. To describe this
result we must recall the de�nition of the homogeneous Siegel domains of type I.
It should be noted that every symmetric tube domain has a realization as a Siegel
domain of type I.

LetM be a �nite dimensional real vector space and let V �M be an open, convex
cone that does not contain straight lines. (Such cones are said to be regular.) Then
the Siegel domain of type I de�ned by V is the domain D �Mc

D =M + iV

It is known that D is bi-holomorphically equivalent with a bounded domain in Cn.
We assume that the cone V is homogeneous, i.e. there is a real algebraic group

S, an algebraic representation � of S onM , and a point c 2 V for which V = �(S)c.
It is well known that in this case S may be chosen to be completely solvable and to
act simply transitively on V. ([Vin]) We shall assume that S has been so chosen.

Under these assumptions, S acts on D by means of �. The group M also acts
on D by translation. In fact D is homogeneous under the semi-direct product
G = M �s S where S acts on M by means of �. This action makes D into a
homogeneous Siegel domain of type I.

The set M =M +0i is referred to as the \Bergman-Shilov" boundary of D{it is
an open dense subset of the Shilov boundary. The second main result of this work
is the statement that a function in L2(M;dx), where dx is Lebesgue measure, is the
boundary value of a Hua-harmonic function if and only if its Fourier transformation
is supported in a certain open subset O 2 M�. This set is invariant under the
adjoint action of S on M� and is a �nite union of open S orbits. Thus, describing
the space of boundary functions comes down to determining which of the S orbits
in M� are contained in O. Such orbits are said to be harmonic. It should be noted
that the S orbits are cones that are typically non-convex.

We think of this result as an analogue of the classical Paley-Wiener theorem in
that it describes the space of boundary values solely in terms of the support of their
Fourier transformations. It is also analogous to results of Rossi and Vergne [RV]
relating to the tangential Cauchy-Riemann equations. In fact, it occurs for much
the same reasons as in [RV].

Determining the harmonic orbits is an important and, as yet, unsolved problem.
However, there is a result that has some promise of yielding signi�cant insight into
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this issue. To describe this result, let P (z; x) denote the Cauchy-Szeg�o Poisson
kernel for D where now z ranges over D and x ranges over M . For � 2M� let

P^(z; �) =

Z 1

�1

P (z; x)e�i<x;�>dx

be the Fourier transformation of P in the x variable. We show that if � belongs to
an open orbit of S, then the corresponding orbit is harmonic if and only if P^(z; �)
is Hua-harmonic as a function of z.

Section 2: Homogeneous Cones

We continue the notation de�ned in the introduction. Speci�cally, we assume
that M , S, �, c, and V are as de�ned at the end of the introduction. The 4-tuple
(S;M; c; �) is referred to as \tube data." The following example plays an important
role in this work.

Example (1.1) Let Mn be the space of all n � n real, symmetric matrices and
let Vn be the cone of all positive de�nite elements of Mn. Let Sn be the group of
n � n upper triangular matrices with positive diagonal. For s 2 Sn and X 2 Mn,
we de�ne

�n(s)X = sXst

where st is the transpose of s. Then, as is well known, (Sn;Mn; I; �n) is tube data
for a Hermitian symmetric tube domain.

It is classical that the domain D is biholomorphically equivalent with a bounded
domain. As such, it has a canonical Riemannian structure de�ned from the Bergman
metric. Since G acts simply transitively on D, the tangent space at ic may be iden-
ti�ed with the Lie algebra G of G.

In general, we adopt the convention that Lie groups are denoted by upper case
Roman letters and the corresponding Lie algebra is denotes by the corresponding
upper case script letter.

Since the Riemannian structure is G-invariant, it is de�ned by a scalar product g
on the Lie algebra G. Koszul ([Kl], Formula 4.5) proved the existence of a functional
� 2 G� such that this scalar product is given by

g(X;Y ) = �([JX; Y ]): (1)

where J : G ! G de�nes the complex structure on G. We shall not explicitly use
any other information concerning � other than the fact that formula (1) de�nes a
J-invariant, positive-de�nite, scalar product.

More explicitly, let M and S be the respective Lie algebras for S and M . Of
course, sinceM is a vector space, we may identifyM andM . The representation �
de�nes a Lie algebra representation (also denoted �) of S onM. Then G isM�sS
where the semi-direct product is de�ned from �. Since S acts simply transitively
on V, the mapping X ! �(X)c de�nes a vector space isomorphism of S onto M.
In [DHP2], it is shown that there is s functional � 2 M� such that

g(�(X1)c� Y1; �(X2)c� Y2) = �(�(X2)�(X1)c) + �(�(Y2)�(Y1)c) (2)
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(See Lemma (2.5) in [DHP2].)
Note that we denote the general element of a product space X�Y as x�y rather

than the more common (x; y).
Now let (S1;M1; c1; �1) and (S2;M2; c2; �2) be two sets of tube data. Then

a homomorphisim from the �rst set of tube data to the second is a pair (�; T )
consisting of a homomorphism � : S1 ! S2 and a mapping T : M1 ! M2 such
that,

(a) T (c1) = c2
(b) For all s 2 S1,

�2(� (s))T = T�1(s)

It follows that T (V1) � V2.
A homomorphism of a given set of tube data into the tube data of Example (1.1)

is said to be a representation of the tube data in Rn. Speci�cally, a representation
of (S;M; c; �) is a pair (�; T ) where � is a representation of S by n � n upper
triangular matrices and T is a mapping of M into the space of n � n symmetric
matrices where

(a) T (c) = I where I is the n� n identity matrix.
(b) For all s 2 S and m 2M ,

T (�(s)m)) = � (s)T (m)� (s)t

Note that it follows that T maps V into the cone of positive de�nite matrices.
Representations are important in part because they provide an inductive proce-

dure (due to Rothaus [Ro]) for constructing cones. To explain this, let (�o; To) be
a representation of (So;Mo; co; �o) in Rn. Let S be the set of all matrices s of the
form

s =

�
a vt

0 so

�
(3)

where a 2 R+, v 2 Rn (thought of as column vectors), so 2 So and 0 is the zero
element of Rn. We de�ne the product of two such elements via

�
a vt

0 so

� �
b ut

0 to

�
=

�
ab au+ [�o(to)v]

t

0 soto

�

It is easily seen that S becomes a Lie group under this action.
Next let M be the vector space of all matrices of the form

m =

�
b wt

w mo

�
(4)

where b 2 R, w 2 Rn, and mo 2 Mo. For s as in formula (3) and m as above, we
de�ne

�(s)m =

�
a2b+ 2a(v;w) + (To(mo)v; v) [�o(s)(aw + To(mo)v)]t

�o(s)(aw + To(mo)v) �o(s)mo

�
(5)
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where (�; �) is the Euclidian scalar product on Rn. It is easily seen that � is a
representation of S on M . (This formula results from formally expanding the
matrix product �

a vt

0 so

� �
b wt

w mo

� �
a 0
v sto

�

using (�; �), �o, and To to de�ne the products of individual elements and where we
interpret somos

t
o as �o(so)mo.)

Finally, let co 2 Vo and set

c =

�
1 0
0 co

�

Let V be the S orbit of c in M . It is a result of Rothaus that V is an open,
regular, convex cone which is independent of the choice of co in Vo. We refer to
(S;M; c; �) as the cone data induced from (So;Mo; co; �o) using the representation
(�o; To). Rothaus also showed that every homogeneous cone is isomorphic to one
induced from a lower dimensional cone using an appropriate representation.

As an example of this construction, we note that in Example 1.1, the usual action
of Sn on Rn de�nes a representation �n of Sn. The elements of Mn are symmetric
matrices so the identity transformation de�nes a mapping to Mn into the space
of symmetric matrices. The pair (�n; I) is a representation of (Sn;Mn; I; �n).
Then, as the reader may easily verify, the corresponding induced cone data is just
(Sn+1;Mn+1; I; �n+1).

The Lie algebra G is easily described. As a vector space G = M�S where M
and S are, respectively, the Lie algebras of M and S. Of course M = M since M
is a vector space. The space S is the set of matrices s of the form

s =

�
a vt

0 so

�

where so 2 So.
As a Lie algebra, G = M�s S where the action of s 2 S on M is found by

di�erentiating formula (5) in the direction of s at the identity. It is given by

�(s)

�
b wt

w m

�
=

�
2ab + 2(v;w) [aw + To(mo)v + �o(so)w]

t

aw + To(mo)v + �o(so)w �o(s)mo

�

where �o and �o are, respectively, the Lie algebra representations obtained by dif-
ferentiating �o and �o

We shall also require a description of the scalar product on the induced cone.
For this we note the following well known result. We sketch the proof for sake of
completeness.

Lemma 2.1. Let the cone data (S;M; c; �) be induced as described above. Then
the functional � from formula (2) is zero on all elements of M of the form
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�
0 wt

w 0

�
Proof This follows very simply from the following formula which is a consequence
of the symmetry of the scalar product. We leave the details to the reader.

�(�([X2;X1])c) = �(�(X2)�(X1)c) � �(�(X1)�(X2)c) = 0

As a direct consequence, we have the following:

Lemma 2.2. Let X 2 G with X =m� s where

m =

�
b wt

w 0

�
s =

�
a vt

0 0

�

Let

E =

�
1 0
0 0

�
Then

g(X;X) = 2�(E)(2a2 + (v; v) + b2=2 + (w;w))

From now on, we will assume that (S;M; c; �) is induced as described above.
There are a number of subgroups of G which play an important role. Speci�cally,
we de�ne the named set on the left in the �gure below to be the set of all elements
of S of the form described on the right where eo is the identity element of So, so
ranges over So, v and w range over Rn, a ranges over R+, and b ranges over R.

SH typical element:

�
a vt

0 eo

�

AH typical element:

�
a 0
0 eo

�

NH typical element:

�
1 vt

0 eo

�

MH typical element:

�
b wt

w 0

�

Mo
H typical element:

�
0 wt

w 0

�

We also identify the groups So and Mo respectively with the subgroups of S and
M described below:

So typical element:

�
1 0
0 so

�

Mo typical element:

�
0 0
0 mo

�
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Finally, we de�ne the following subgroups of G =M �s S.

Go =MoSo

GH =MHSH

H =MHNH

It is easily seen that H is a normal subgroup of G. The reason for calling this
subgroup H is that it is a Heisenberg group{i.e it is a two step nilpotent Lie group
with one dimensional center. In fact, its center is the set of elements in M such
that w = 0 and mo = 0.

The orbit of ic in Mc under GH is the set of elements of M of the form

�
b+ i(a2 + jvj2) wt + ivt

w + iv ico

�

This set is identi�able with the domain B in C�Cn consisting of all points (W;Z)
such that im W > j im (Z)j2.

The domain B is, in fact, equivalent with the unit ball in Cn+1. The simplest
way to prove this is to note that the transformation

(W;Z)! (2W � i
X

Z2
i ; Z)

transforms B into the domain described by im W > jZj2, which is well known to
be equivalent with the unit ball. Since GH acts simply transitively on B, we may
identify GH with the unit ball in Cn+1.

There is a representation of (S;M; c; �) that plays an important role. For s as in
formula (3), we de�ne � (s) to be the operator on Rn+1 = R �Rn de�ned by the
matrix �

a vt

0 �o(so)

�

Similarly, for m as in formula (4) we de�ne T (m) to be the operator on Rn+1 =
R�Rn de�ned by the matrix

�
b wt

w To(mo)

�

It is easily seen that (�; T ) is a representation of (S;M; c; �) on Rn+1. We refer
to this representation as the representation induced from the representation (�o; To)
of (So;Mo; co; �o). Notice that the mapping

T � � :M �s S !Mn �s S
n

is a group homomorphism that restricts to an isomorphism of GH onto Gn
H . Lemma

(2.2) tells us that the corresponding Lie algebra isomorphism is a scalar multiple
of an isometry of GH onto GnH.
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If V is a regular cone in a vector space M, then we de�ne the dual cone V� be
the set of elements � 2 M� that are strictly positive on V � 0. The group S acts
on V� via the adjoint representation which is de�ned by the formula

��(s) = �(s�1)�

It is known that V� is homogeneous under this action.
For each m 2 V, we de�ne

D(m) =

Z
V�

e�<m;�> d� (6)

where d� denotes Lebesgue measure on V�, which we normalize so that D(c) = 1.
This function is referred to as the characteristic function for the cone. The absolute
convergence of this integral for all v 2 V is proved in Vindberg [V].

We would like to describe D inductively. To this end, we note that a simple
change of variables in formula (6) shows that for all s 2 S and all v 2 V,

D(�(s)m) = �(s)�1D(m) (7)

where
�(s) = det(�(s))

Since D(c) = 1, it follows that D maps �(s)c into �(s)�1.
For so 2 So, let

�o(so) = det(�o(so)) and �(so) = det(�o(so))

Lemma 2.3. For s as in formula (3),

�(s) = an+2�(so)�o(so)

Proof We note that �
a vt

0 so

�
=

�
a 0
0 so

� �
1 a�1vt

0 eo

�

Let us call the �rst matrix on the right � and the second u. Since u is unipotent,
�(u) = 1. Hence �(s) = �(�). Our lemma follows easily by taking v = 0 in formula
(5).

Now, suppose that m = �(s)c. Then, from formula (5), mo = �o(so)co. Hence

�o(so) = Do(mo)
�1

where Do is the characteristic function for Vo. Furthermore

To(mo) = �o(so)To(co)�o(so)
t = �o(so)�o(so)

t
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Hence

�(so) = det(To(mo))
1=2

Finally, we note that a similar argument proves that

det(T (m)) = det(� (s))2 = a2 det(�o(so))
2 = a2 det(To(mo))

Thus, substitution into the formula from Lemma (2.3) yields

D(m) = �(m)�1

=

�
det(T (m))

det(To(mo))

��(n+2)=2

det(To(mo))
�1=2Do(mo)

= det(T (m))�(n+2)=2 det(To(mo))
(n+1)=2D(mo)

The following (well known) corollary follows from the above formula by induc-
tion. (see [KF], p.11)

Corollary 2.4. Let Dn be the characteristic function for the cone Vn of Example
(1.1). Then for all m 2 Vn,

Dn(m) = det(m)�(n+1)=2

We note the following consequence of this corollary which will be used in the
next section:

D(m)

D(mo)
=

Dn+1(T (m))

Dn(To(mo))
(8)

Section 3. The Poisson Kernel for the HJK system.

We continue the notation established in x2. Speci�cally, we assume that D is
the tube domain de�ned by the cone data (S;M; c; �) which is induced from the
representation (�o; To) of (So;Mo; co; �o).

Our goal in this section is to prove that a bounded Hua-harmonic function F is
reproducible from its boundary value function by integration against the Cauchy-
Szeg�o Poisson kernel. Our proof will rely heavily on one of the main results of
[DHP2]{namely that there is a Poisson kernel on the Bergman-Shilov boundary
that reproduces Hua harmonic functions from their boundary values. Actually,
in [DHP2] we proved for F to be reproducible using the stated kernel, it su�ced
that F be harmonic for a smaller system, called the strongly diagonal Hua system.
Functions harmonic for this system are referred to as diagonally harmonic. It is
this stronger result that we use. We will not need to recall the de�nitions of either
the Hua system or of the strongly diagonal Hua operators since we will only require
a few of their general properties from [DHP2].
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Now, let F be a bounded, diagonally-harmonic function on G = M �s S. In
[DHP2] we used one particular strongly diagonal operator denoted HJK1 (cf. ,
Theorem (2.18), loc. cit.). This operator had the form

HJK1 = �(E)�2

"
2(Y 2 +X2) � (n+ 2)Y +

nX
1

Y 2
j +X2

j

#

where E and � are as in Lemma 2.2, �(E)�1=2Yi is an orthonormal basis for NH,
�(E)�1=2Xi is an orthonormal basis for Mo

H and Y = 0 � E=2 and X = E � 0.
(Note that under the obvious identi�cations of NH and Mo

H with Rn, Xi and Yi
are orthonormal bases with respect to 2(�; �). Thus, HJK1 is independent of the
choice of �, up to scalar multiples.)

Note that HJK1 is de�ned by an element �H in the enveloping algebra of GH .
In fact, it is easily seen that �H is just the Laplace-Beltrami operator for the unit
ball in Cn+1 under the identi�cation of GH with the unit ball described in Section
2. It follows from [DHP1] that the maximal boundary for �H on GH is H, which
we identify with GH=AH . Let PH be the Poisson kernel function for �H on H.
Since F jGH is �H-harmonic, there is a function fH on GH which is constant on
cosets of AH in GH such that

F (e) =

Z
H

fH(h)PH (h) dh (9)

Let �(t) be the element of G de�ned by

�(t) = 0�

�
t 0
0 I

�

Lemma 3.1. Let notation be as above. Assume that fH is continuous on H.
Then for all k 2 H,

lim
t!0

F (k�(t)) = fH(k)

Proof For all g 2 G, we set g(t) = �(t)g�(t)�1. Thus, if

h =

�
b wt

w 0

�
�

�
1 vt

0 I

�

then

h(t) =

�
t2b twt

tw 0

�
�

�
1 tvt

0 I

�

As t! 0, h(t) ends to the identity element. Then, for all k 2 H,

F (k�(t)) =

Z
H

fH(k�(t)h)PH(h) dh

=

Z
H

fH(kh(t))PH(h) dh
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Our result follows easily from this and a standard approximate identity argument
based on the observation that PH is positive and has integral 1. We leave the details
to the reader.

In [DHP2] we proved the existence of a Poisson kernel function for the Hua
system on Siegel domains. Thus, there is a positive function P on G=S =M , with
integral 1, such that for all bounded, HJK-harmonic functions F and all g 2 G,

F (g) =

Z
M

f(gm)P (m) dm

where f is the boundary function of F .
The function P may not be unique. However, we assume that one speci�c P has

been chosen. From the above lemma, for all k 2 H,

fH(k) = lim
t!0

F (k�(t))

= lim
t!0

Z
M

f(k�(t)m)P (m) dm

= lim
t!0

Z
M

f(km(t))P (m) dm

Now, for m 2 M , we may write m = mH +mo where mH 2 MH and mo 2 Mo.
Then, since �(t) centralizes Mo,

m(t) = mH(t) +mo

Noting that mH(t) tends to 0 as t! 0, we see that

fH(k) =

Z
Mo

f(kmo)Po(mo) dmo (10)

where

Po(mo) =

Z
MH

P (mo +mH) dmH (11)

Putting formulas (9) and (10) together, we see that

F (e) =

Z
H

Z
Mo

f(kmo)PH(k)Po(mo) dmo dk (12)

The function Po has an important interpretation. As commented earlier, the
group Go acts transitively on the domain Do. Let HJKo be the corresponding Hua
system. From Lemma (2.21) in [DHP2], a function Fo on Go is diagonally harmonic
for HJKo, if and only if it is the restriction to Go of an HJK diagonally-harmonic
function ~F that is constant on GH cosets in G. The boundary function ~f of ~F will
be constant on cosets of MH in M . But then

~F (e) =

Z
M

~f (m)P (m) dm

=

Z
MH

Z
Mo

~f(mH +mo)P (mH +mo) dmH dmo

=

Z
Mo

~f (mo)Po(mo) dmo
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It follows that the restriction of Po to Mo is a Poisson kernel function for the
diagonally harmonic functions on Go. Actually, in formula (12) we may replace Po
by any Poisson Kernel function for the strongly diagonal Hua operators on Go. To
see this, it su�ces to show that for all k 2 H, the function

mo ! f(kmo)

is the boundary function for a diagonally harmonic function on Go, since then the
integral in formula (10) will be independent of the particular kernel chosen. Since
our di�erential operators commute with left translation, it in fact su�ces to assume
that k = e.

However, for g 2 G, let

Fo(g) = lim
t!0

F (�(t)g)

Lemma 3.2. The limit de�ning Fo exists for all g 2 G and de�nes a diagonally
harmonic function that is constant on cosets of GH on G. The corresponding
boundary function equals f on Mo.

Proof Let g 2 G. We may write

g = gogH

where gH 2 GH and go 2 Go. Then,

Fo(g) = lim
t!0

Z
M

f(�(t)gogHm)P (m) dm

= lim
t!0

Z
M

f(gogH(t)m(t))P (m) dm

Reasoning as in the proof of Lemma 1, we see that

Fo(g) =

Z
M

f(gomo)Po(m) dm (13)

Thus, in particular, the limit de�ning Fo exists and de�nes a function that is
constant on cosets of GH . Furthermore, since the strongly diagonal operators are
left invariant, the function

Ft(g) = F (�(t)g)

is diagonally harmonic for all t > 0. The system of strongly diagonal operators
has an elliptic operator in its span. Hence, the limit de�ning Fo converges in the
C1 topology and Fo is diagonally-harmonic. It follows from formula (13) that the
boundary function for Fo is f jGo, proving our lemma.

From this point on, Po represents any Poisson kernel function for the diagonally
harmonic functions on Go, not just the Po de�ned by formula (11).
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Since f is constant on cosets of S in G, we may reduce the integral in formula
(12) to an integral overM . Speci�cally, let k = mHh where h 2 NH andmH 2MH .
Then

f(kmo) = f(mHhmo) = f(mHhmoh
�1) = f(mH [h;mo]mo)

where
[h;mo] = hmoh

�1m�1o

But [h;mo] 2MH . Hence, changing variables in (12), yields

F (e) =

Z
Mo

Z
NH

Z
MH

f(mHmo)PH (mH[h;mo]
�1h)Po(mo) dmo dhdmH

=

Z
Mo

Z
MH

f(mHmo)Q(mHmo)Po(mo) dmo dmH

where

Q(mHmo) =

Z
NH

PH(mHmohm
�1
o ) dh (15)

The above computations may be summarized in the following theorem.

Theorem 3.3. Let Q be de�ned as in formula (15) where PH is the Poisson kernel
function for HJK1 on GH . Let Po be a Poisson kernel function for the strongly
diagonal HJK system on Go. Then the function P on G de�ned by

P (m) = Q(m)Po(mo) (16)

is a Poisson kernel function for the diagonally harmonic functions on G.

At �rst glance, it might appear that the integral in formula (15) would be di�cult
to evaluate. Actually, there is a trick that evaluates it quite simply. Consider �rst
the special case where we are inducing from the cone data (Sn;Mn; I; �n) de�ned
in Example (1.1) relative to the canonical representation. In this case, we obtain
(Sn+1;Mn+1; I; �n+1). The Poisson kernel functions for the corresponding domains
are unique and well known. It follows from formula (16) that

Qn+1(m) =
Pn+1(m)

Pn(mo)

where Pn and Pn+1 are the Poisson kernel functions for the domains de�ned by
the cones Vn and Vn+1 respectively and Qn+1 the function corresponding to Q on
Mn+1.

The computation of Q in the general case may be reduced to that just done using
the induced representation (�; T ) described in x2. Speci�cally, we noted in x2 that
the mapping T � � restricts to an isomorphism � of GH onto Gn+1

H . Furthermore,
at the Lie algebra level, this mapping is (up to a scalar) an isometry. It follows that
the HJK1 operator on Gn

H is a scalar multiple of the image of the corresponding
operator on GH . In particular,

PH = Pn
H � �
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where Pn
H is the Poisson kernel function for HJK1 on Gn

H .
It follows easily from this and formula (15) that

P (m)

Po(mo)
= Q(m) = Qn+1(T (m)) =

Pn+1(T (m))

Pn(To(mo))
(17)

The reader should note the similarity between this formula and formula (8). In
fact, it is known ([KF], p. 181) that for the domain de�ned by the cone in Example
(1.1)

Pn(m) = ��n(n+1)=2jDn(I + im)j2

Using formulas (17), (8) and mathematical induction, we prove the following
theorem, which is our �rst major result.

Theorem 3.4. Let P (m) = ��njD(c + im)j2 where n is the dimension of M .
Suppose that F is a bounded C1 function on D which is annihilated by HJK and
has continuous boundary function f on M . Then

F (ic) =

Z
M

f(m)P (m) dm

Proof We may assume by induction that

Po(mo) = ��no jDo(c+ imo)j
2

where no is the dimension of Mo. Then n = no+ k+1 where To acts on Rk. Then

P (m) =
P k+1(T (m))

P k(To(mo))
Po(mo)

= ��(k+1) jD
k+1(I + iT (m))j2

jDk(I + iTo(mo))j2
jDo(co + imo)j

2

= ��njD(c + im)j2

(We used formula (8) in the last equality.) This proves the theorem.

Of course, once we can compute F (ic) from f , we can compute F (z) for any
z 2 D. Let z = x + iy 2 D. Write z = g(ic) where g = x � s. Then,

F (z) =

Z
M

f(xsm)P (m) dm

=

Z
M

f(xsms�1)P (m) dm

=

Z
M

f(x + �(s)m)P (m) dm

=

Z
M

f(m)P (�(s)�1(m� x)) det(�(s)�1) dm

(18)
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The Poisson kernel is, then, the function

P (z;m) = P (�(s)�1(m � x)) det(�(s)�1)

= ��njD(ic + �(s)�1(m� x))j2(det(�(s)�2) det(�(s))

= ��njD(iy +m� x)j2=D(y)

From [KF], p.181, this is exactly the Cauchy-Szeg�o Poisson kerned for D. It
is known that this function is Harmonic for the Laplace-Beltrami operator if and
only if D is symmetric. On the other hand, if the boundary value functions for the
Hua harmonic functions (or, more generally, the diagonally harmonic functions) are
dense in L1(M), then this kernel would have to be harmonic in z. Thus, we arrive
at the following theorem: (Note that the density of the boundary values is known
in the semi-simple case by [JK].)

Theorem 3.5. The space of boundary functions for the Hua harmonic functions
on D is dense in L1(M) if and only if D is symmetric.

Section 4: L2 Boundary Values

In this section, we continue the notation from the previous sections. We let H(D)
denote the space of bounded Hua-harmonic, functions on D. We will generally
denote the elements of H(D) by upper case Roman letters and their boundary
functions on M by the corresponding lower case Roman letter. We de�ne

H2
o(D) = fF 2 H(D) j f 2 L2(M)g

where we use Lebesgue measure on M . Since the mapping F ! f is one-to-one,
we may put a norm on H2

o(D) by declaring

jjF jj = jjf jj2

We de�ne H2(D) to be the completion of H2
o(D) in this norm. This space is

identi�able with a closed subspace B2(M) of L2(M).
We note that from Theorem 3.4,

1 =

Z
M

P (m) dm

In particular, P is in L1(M). It also follows from formula (6) that P 2 L1(M).
Thus, P 2 L2(M). It follows that the Poisson integral de�nes a continuous mapping
of L2(M) into a space of continuous functions on D. The ellipticity of the Hua
system then tells us that H2(D) is also identi�able with a space of C1 functions
on D. We refer to B2(M) as the space of boundary values of elements of H2(D).
Our goal is to describe B2(M).

We begin with the observation that H2(D) is invariant under the action of G on
D. In fact, the argument leading up to formula (18) shows that if F is diagonally
harmonic, then the boundary function for z ! F (g�1z) is �(g)f where

�(g)f(m) = f(�(s�1)(m � x))
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which will be in L2(M) if f is. In fact, the representation

�o(g) = det(�(s))�1=2�(g)

is unitary on L2(M) .
We will describe B2(M) by describing the irreducible decomposition of the re-

striction of �o to this subspace. The irreducible decomposition of �o itself is easily
described. For f 2 L2(M) and � 2M�, let

f^(�) =

Z
M

f(x)e�i<x;�> dx

It is easily computed that f ! f^ intertwines �o and the representation ~�o on
L2(M�) de�ned by

~�o(x� s)h(�) = det(�(s)1=2)e�i<x;�>h(��(s�1)�) (19)

Since �� has open orbits (e.g. V�), we know that the union of the open orbits
is dense in M�. Let Vi, for i = 1; 2 : : : ; k, be the set of open �� orbits. Let Li be
the space of functions in L2(M�) that are supported in Vi. Then the Li are closed,
invariant subspaces for ~�o.

Lemma 4.1. The restriction �i of ~�o to Li is irreducible and the �i are mutually
inequivalent.

Proof For each i, let �i be a �xed base point in Vi and let �i be the character of
M de�ned by

�i(m) = ei<m;�i>

It is easily seen that �i is equivalent with the representation of G induced from
�i. From Mackey theory, the irreducibility of �i is equivalent with proving that
the stabilizer of �i under the adjoint action of G on M is just M itself. This, in
turn, will follow if we can show that the �� stabilizer of �i is trivial. However, since
the r� orbit of �i is open, this stabilizer must have zero dimension. The triviality
follows from the complete solvability of S.

To prove the mutual inequivalence of the �i, it su�ces to show that the restric-
tions of these representations to M are inequivalent, which is clear from formula
(19).

It follows from Lemma 4.1 that there is a set i1; i2; : : : ik of indecies for which

(B2(M))^ = �
X
j

Lij

This decomposition de�nes the irreducible decomposition of �o. The following
theorem follows from these comments. We call this the \Paley-Wiener" theorem
because it characterizes the boundary values of the space of L2 harmonic functions
in terms of the support of their Fourier transforms.
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Paley-Wiener Theorem. Let f 2 L2(M). Then f 2 B2(M) if and only if the
Fourier transformation f^ is supported in the union of the Vij .

The orbits Vij are called harmonic. If we can characterize the harmonic orbits,
then we have an essentially complete picture of the boundary values of the elements
of H2(D). At �rst glance, it appears that obtaining such a characterization should
not be di�cult. Let P^(z; �) be as de�ned at the end of x1. If f 2 Li, then f^ is
supported in Vi. Thus

F (z) =

Z
M

f(m)P (z;m) dm

=

Z
M�

f^(�)P^(z; �) dl

=

Z
V�i

f^(�)P^(z; �) dl

This de�nes a Hua-harmonic function for all f in Li if and only if

z ! P^(z; �)

is Hua-harmonic for all � 2 V�i . Actually, it is easily seen that for all s 2 S

P^(�(s)z; �) = P^(z; ��(s)�)

Thus, the orbit will be harmonic if P^ is harmonic for any single � in the orbit.
Hence, we arrive at the following theorem.

Theorem 4.2. The orbit Vi is harmonic if and only if there is a �i 2 Vi such that
z ! P^(z; �i) is harmonic for the Hua system.

Unfortunately, there does not seem to be a simple formula for P^. Hence, we do
not yet have a simple criterion ot the harmonicity of a given orbit. This, hopefully,
will be the subject of further work on this problem.
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