
Stationary distributions of continuous time Markov
chains

Jonathon Peterson

April 13, 2012

The following are some notes containing the statement and proof of some theorems I covered
in class regarding explicit formulas for the stationary distribution and interpretations of the
stationary distribution as the limiting fraction of time spent in states.

1 Stationary measures in continuous time

The following theorem is an analog of the explicit formula for stationary measures for discrete
time Markov chains (Theorem 1.20).

Theorem 1. If Xt is an irreducible continuous time Markov process and all states are
recurrent, then for any x ∈ I the measure µx defined by

µx(y) =

∫ ∞
0

Px(Xt = y, t < Tx) dt

is a stationary measure.

Remark 2. Note that we can also write

µx(y) =

∫ ∞
0

E[1Xt=y, t<Tx ] dt

= E

[∫ ∞
0

1Xt=y, t<Tx dt

]
= E

[∫ Tx

0

1Xt=y dt

]
(1)

That is, µx(y) has the interpretation of the amount of time spent in y before the first return
to x when starting originally from x.
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Proof of Theorem 1. To show that µx is a stationary distribution, it is enough to check that
µxQ = 0. To this end, we first use the formula for µx(y) to write the z-th entry of µxQ as

(µxQ)(z) =
∑
y∈I

µx(y)Q(y, z)

=
∑

y∈I\{z}

µx(y)q(y, z)− λzµx(z)

=
∑

y∈I\{z}

(∫ ∞
0

Px(Xt = y, t < Tx) dt

)
q(y, z)− λz

∫ ∞
0

Px(Xt = z, t < Tx) dt

=

∫ ∞
0

 ∑
y∈I\{z}

Px(Xt = y, t < Tx)q(y, z)− λzPx(Xt = z, t < Tx)

 dt (2)

The term inside the braces looks similar to the Kolmogorov forward differential equation,
but the presence of the condition t < Tx inside the probabilities makes it different. To rectify
this we will create a new Markov process X̂t on state space Î = I ∪ {ζ} (where ζ is a new
state not originally in I). The new Markov chain will have jump rates q̂ that are given by

q̂(y, z) =



q(y, z) y = x or z ∈ I\{x}
q(y, x) y ∈ I\{x} and z = ζ

0 y ∈ I\{x} and z = x

0 y = x and z = ζ

0 y = ζ and z ∈ I,

and λ̂y =
∑

z∈Î\{y}

q̂(y, z) =

{
λy y ∈ I
0 y = ζ

Thus, the new Markov process X̂t behaves the same as the old Markov process except all
jumps into x from another site are redirected to be jumps to a new absorbing state ζ. With
X̂t defined in this way, we obtain that

Px(Xt = y, t < Tx) = Px(X̂t = y), ∀y ∈ I.

We’ll continue our analysis of (µxQ)(z) depending on whether or not z = x.

Case I: z 6= x.

If z 6= x then the terms inside the braces in (2) are∑
y∈I\{z}

Px(X̂t = y)q(y, z)− λzPx(X̂t = z)

=
∑

y∈Î\{z}

Px(X̂t = y)q̂(y, z)− λ̂zPx(X̂t = z)

=
d

dt
Px(X̂t = z),
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where the last equality follows from the Kolmogorov forward equations for the Markov
process X̂t. Note also that the in the first equality above we were able to extend the sum
from y ∈ I\{x} to y ∈ Î\{x} since q̂(ζ, z) = 0.

Therefore, putting this back into (2) we obtain that

(µxQ)(z) =

∫ ∞
0

d

dt
Px(X̂t = z) dt

= lim
s→∞

Px(X̂s = z)− Px(X̂0 = z)

= 0,

where the last equality holds because Px(X̂0 = z) = 0 (since z 6= x) and Px(X̂s = z) ≤
Px(Tx > s) → 0 as s → ∞ (since Xt is recurrent). Thus, we’ve shown that (µxQ)(z) = 0
whenever z 6= x and it remains to show this is also true when z = x.

Case I: z = x.

If z = x then the terms inside the braces in (2) are∑
y∈I\{x}

Px(X̂t = y)q(y, x)− λxPx(X̂t = x)

=
∑

y∈I\{x}

Px(X̂t = y)q̂(y, ζ)− λxPx(X̂t = x)

=
∑
y∈I

Px(X̂t = y)q̂(y, ζ)− λ̂ζPx(X̂t = ζ)− λxPx(X̂t = x)

=
d

dt

{
Px(X̂t = ζ)

}
− λxPx(X̂t = x).

where in the second equality is true because q̂(x, ζ) = 0 and λ̂ζ = 0 and the last equality

follows from the Kolmogorov forward equation for X̂t. Also, note that since X̂t can never
return to x once it leaves, Px(X̂t = x) = e−λxt since this is just the probability that the
Markov process hasn’t left x yet by time t.

Putting all of this back into (2) we obtain that

(µxQ)(x) =

∫ ∞
0

d

dt

{
Px(X̂t = ζ)

}
dt−

∫ ∞
0

λxe
−λxt dt

= lim
s→∞

Px(X̂s = ζ)− Px(X̂0 = ζ)− 1,

= 0.

where the last equality holds since Px(X̂s = ζ) = Px(Tx < s) → 1 as s → ∞ since Xt is
recurrent.

Thus, we have shown that (µxQ)(z) = 0 for all z ∈ I and so µx is a stationary measure. We
should also check that the definition of µx isn’t trivial. That is, µx(y) ∈ (0,∞). First, note
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that µx(x) = 1/λx since the holding time at x is Exp(λx). Secondly, since µx is stationary
we know that µxpt = µx for any t > 0 and so

1

λx
= µx(x) = (µxpt)(x) ≥ µx(y)pt(y, x).

Since Xt is irreducible we know that pt(y, x) > 0 for any t > 0 and so µx(y) ≤ 1
λxpt(y,x)

<∞.

To show that µx(y) > 0, note that since (1) shows that µx(y) is the expected amount of time
spent in y between visits to x, the strong Markov property implies that this is at least the
probability of reaching y before returning to x times the expected amount of time spent in
y before the first jump out of y. That is,

µx(y) = Ex

[∫ Tx

0

1Xt=y dt

]
= Ex

[∫ Tx

Vy

1Xt=y dt

]

= Px(Vy <∞)Ey

[∫ Tx

0

1Xt=y dt

]
≥ Px(Vy <∞)Ey

[∫ minz 6=y Tz

0

1Xt=y dt

]
= Px(Vy <∞)

1

λy
.

Since Xt is irreducible we have that Px(Vy <∞) > 0 and so µx(y) > 0.

As in the case of discrete time Markov chains we can normalize µx to obtain a stationary
distribution (at least when Ex[Tx] <∞).

Corollary 2.1. If Xt is irreducible and positive recurrent, then a stationary distribution can
be defined by

π(y) =
µx(y)

Ex[Tx]

for any x ∈ I.

Proof. This follows Theorem 1 and the fact that∑
y

µx(y) =

∫ ∞
0

∑
y

Px(Xt = y, t < Tx) dt =

∫ ∞
0

Px(t < Tx) dt = Ex[Tx].
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2 Interpretations of the limiting distribution

If we know that a limiting distribution π exists then π(j) is approximately the probability
that the Markov process will be in state j at some very large time t. We will show in this
section that π(j) also is equal to the limiting fraction of time that the Markov process spends
in state j. To make this precise, define

Lt(y) =

∫ t

0

1Xs=yds.

Theorem 3. If Xt is irreducible and positive recurrent, then

lim
t→∞

Lt(y)

t
=

µx(y)

Ex[Tx]
,

where the above limit holds with probability one, for any x ∈ I, and irrespective of the starting
location. Moreover, since the limit is the same for any x ∈ I we have that

lim
t→∞

Lt(y)

t
=

1

λyEy[Ty]
.

To relate this limit to stationary distributions we need the following theorem.

Theorem 4. If Xt is irreducible and positive recurrent, then there is a unique stationary
distribution π. Moreover, π has the formula

π(y) =
1

λyEy[Ty]
.

Proof of Theorem 3. Suppose that the Markov chain starts at X0 = x. Let Tx = τ1 < τ2 <
τ3 < . . . be the times of successive returns to x and let

ri =

∫ τi

τi−1

1Xs=y ds

be the amount of time spent in state y between times τi−1 and τi (here we let τ0 = 0 by
convention). Also, let

N(t) = max{n ≥ 0 : τn ≤ t}

be the number of returns to x by time t.

The law of large numbers from renewal theory (Theorem 3.1 in the book) implies that

lim
t→∞

N(t)

t
=

1

E[τ1]
=

1

Ex[Tx]
, (3)
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with probability one. Also, since the ri are i.i.d., the law of large numbers implies that

lim
n→∞

1

n

n∑
i=1

ri = E[r1] = Ex

[∫ Tx

0

1Xt=y dt

]
= µx(y). (4)

Now, since the definition of N(t) implies that τN(t) ≤ t < τN(t)+1 we have that

∫ τN(t)

0

1Xs=y ds =

N(t)∑
i=1

ri ≤ Lt(y) ≤
N(t)+1∑
i=1

ri =

∫ τN(t)+1

0

1Xs=y ds

Therefore,

N(t)

t

1

N(t)

N(t)∑
i=1

ri ≤
Lt(y)

t
≤ N(t) + 1

t

1

N(t) + 1

N(t)+1∑
i=1

ri,

and so with probability one Lt(y)/t is sandwiched between two terms that both converge to
µx(y)/Ex[Tx].

We still need to show that the limit is the same even if the Markov process doesn’t start
at X0 = x. To this end, suppose the Markov process starts at X0 = z 6= x. Then define
τ1 = Tx to be the first visit to x and as above τ2 < τ3 < . . . are the successive visits to x. In
this case, it is still true that (3) holds (this is the law of large numbers for a delayed renewal
process) and that (4) holds as well (this is because r1 <∞ and r2, r3, . . . are i.i.d.).

The final claim of the Theorem that the limit is equal to 1/(λyEy[Ty]) follows by choosing
x = y and noticing that µy(y) = 1/λy.

Proof of Theorem 4. Theorem 3 implies that Lt(y)/t → 1
λyEy [Ty ]

for any initial distribution

of X0. In particular, it holds if X0 has an initial distribution π that is stationary. Therefore,
the bounded convergence theorem implies that

lim
t→∞

Eπ

[
Lt(y)

t

]
=

1

λyEy[Ty]
.

On the other hand, the definition of Lt(y) implies that

Eπ

[
Lt(y)

t

]
=

1

t
Eπ

[∫ t

0

1Xs=y ds

]
=

1

t

∫ t

0

Pπ(Xs = y) ds =
1

t

∫ t

0

π(y) = π(y),

where we used that π was a stationary distribution in the second to last equality. Thus,
we have shown that any stationary distribution π must satisfy π(y) = 1

λyEy [Ty ]
, and so π is

unique.
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