Stationary distributions of continuous time Markov chains

Jonathon Peterson

April 13, 2012

The following are some notes containing the statement and proof of some theorems I covered in class regarding explicit formulas for the stationary distribution and interpretations of the stationary distribution as the limiting fraction of time spent in states.

1 Stationary measures in continuous time

The following theorem is an analog of the explicit formula for stationary measures for discrete time Markov chains (Theorem 1.20).

Theorem 1. If X_t is an irreducible continuous time Markov process and all states are recurrent, then for any $x \in I$ the measure μ_x defined by

$$\mu_x(y) = \int_0^\infty P_x(X_t = y, t < T_x) dt$$

is a stationary measure.

Remark 2. Note that we can also write

$$\mu_x(y) = \int_0^\infty E[\mathbf{1}_{X_t=y, t < T_x}] dt$$

= $E\left[\int_0^\infty \mathbf{1}_{X_t=y, t < T_x} dt\right]$
= $E\left[\int_0^{T_x} \mathbf{1}_{X_t=y} dt\right]$ (1)

That is, $\mu_x(y)$ has the interpretation of the amount of time spent in y before the first return to x when starting originally from x.

Proof of Theorem 1. To show that μ_x is a stationary distribution, it is enough to check that $\mu_x Q = \mathbf{0}$. To this end, we first use the formula for $\mu_x(y)$ to write the z-th entry of $\mu_x Q$ as

$$(\mu_{x}Q)(z) = \sum_{y \in I} \mu_{x}(y)Q(y,z)$$

$$= \sum_{y \in I \setminus \{z\}} \mu_{x}(y)q(y,z) - \lambda_{z}\mu_{x}(z)$$

$$= \sum_{y \in I \setminus \{z\}} \left(\int_{0}^{\infty} P_{x}(X_{t} = y, t < T_{x}) dt \right) q(y,z) - \lambda_{z} \int_{0}^{\infty} P_{x}(X_{t} = z, t < T_{x}) dt$$

$$= \int_{0}^{\infty} \left\{ \sum_{y \in I \setminus \{z\}} P_{x}(X_{t} = y, t < T_{x})q(y,z) - \lambda_{z}P_{x}(X_{t} = z, t < T_{x}) \right\} dt \qquad (2)$$

The term inside the braces looks similar to the Kolmogorov forward differential equation, but the presence of the condition $t < T_x$ inside the probabilities makes it different. To rectify this we will create a new Markov process \hat{X}_t on state space $\hat{I} = I \cup \{\zeta\}$ (where ζ is a new state not originally in I). The new Markov chain will have jump rates \hat{q} that are given by

$$\hat{q}(y,z) = \begin{cases} q(y,z) & y = x \text{ or } z \in I \setminus \{x\} \\ q(y,x) & y \in I \setminus \{x\} \text{ and } z = \zeta \\ 0 & y \in I \setminus \{x\} \text{ and } z = x \\ 0 & y = x \text{ and } z = \zeta \\ 0 & y = \zeta \text{ and } z \in I, \end{cases} \text{ and } \hat{\lambda}_y = \sum_{z \in \hat{I} \setminus \{y\}} \hat{q}(y,z) = \begin{cases} \lambda_y & y \in I \\ 0 & y = \zeta \\ 0 & y = \zeta \end{cases}$$

Thus, the new Markov process \hat{X}_t behaves the same as the old Markov process except all jumps into x from another site are redirected to be jumps to a new absorbing state ζ . With \hat{X}_t defined in this way, we obtain that

$$P_x(X_t = y, t < T_x) = P_x(\hat{X}_t = y), \quad \forall y \in I.$$

We'll continue our analysis of $(\mu_x Q)(z)$ depending on whether or not z = x.

Case I: $z \neq x$.

If $z \neq x$ then the terms inside the braces in (2) are

$$\sum_{y \in I \setminus \{z\}} P_x(\hat{X}_t = y)q(y, z) - \lambda_z P_x(\hat{X}_t = z)$$

=
$$\sum_{y \in \hat{I} \setminus \{z\}} P_x(\hat{X}_t = y)\hat{q}(y, z) - \hat{\lambda}_z P_x(\hat{X}_t = z)$$

=
$$\frac{d}{dt} P_x(\hat{X}_t = z),$$

where the last equality follows from the Kolmogorov forward equations for the Markov process \hat{X}_t . Note also that the in the first equality above we were able to extend the sum from $y \in I \setminus \{x\}$ to $y \in \hat{I} \setminus \{x\}$ since $\hat{q}(\zeta, z) = 0$.

Therefore, putting this back into (2) we obtain that

$$(\mu_x Q)(z) = \int_0^\infty \frac{d}{dt} P_x(\hat{X}_t = z) dt$$

=
$$\lim_{s \to \infty} P_x(\hat{X}_s = z) - P_x(\hat{X}_0 = z)$$

= 0,

where the last equality holds because $P_x(\hat{X}_0 = z) = 0$ (since $z \neq x$) and $P_x(\hat{X}_s = z) \leq P_x(T_x > s) \to 0$ as $s \to \infty$ (since X_t is recurrent). Thus, we've shown that $(\mu_x Q)(z) = 0$ whenever $z \neq x$ and it remains to show this is also true when z = x.

Case I: z = x.

If z = x then the terms inside the braces in (2) are

$$\sum_{y \in I \setminus \{x\}} P_x(\hat{X}_t = y)q(y, x) - \lambda_x P_x(\hat{X}_t = x)$$

$$= \sum_{y \in I \setminus \{x\}} P_x(\hat{X}_t = y)\hat{q}(y, \zeta) - \lambda_x P_x(\hat{X}_t = x)$$

$$= \sum_{y \in I} P_x(\hat{X}_t = y)\hat{q}(y, \zeta) - \hat{\lambda}_\zeta P_x(\hat{X}_t = \zeta) - \lambda_x P_x(\hat{X}_t = x)$$

$$= \frac{d}{dt} \left\{ P_x(\hat{X}_t = \zeta) \right\} - \lambda_x P_x(\hat{X}_t = x).$$

where in the second equality is true because $\hat{q}(x,\zeta) = 0$ and $\hat{\lambda}_{\zeta} = 0$ and the last equality follows from the Kolmogorov forward equation for \hat{X}_t . Also, note that since \hat{X}_t can never return to x once it leaves, $P_x(\hat{X}_t = x) = e^{-\lambda_x t}$ since this is just the probability that the Markov process hasn't left x yet by time t.

Putting all of this back into (2) we obtain that

$$(\mu_x Q)(x) = \int_0^\infty \frac{d}{dt} \left\{ P_x(\hat{X}_t = \zeta) \right\} dt - \int_0^\infty \lambda_x e^{-\lambda_x t} dt$$
$$= \lim_{s \to \infty} P_x(\hat{X}_s = \zeta) - P_x(\hat{X}_0 = \zeta) - 1,$$
$$= 0.$$

where the last equality holds since $P_x(\hat{X}_s = \zeta) = P_x(T_x < s) \to 1$ as $s \to \infty$ since X_t is recurrent.

Thus, we have shown that $(\mu_x Q)(z) = 0$ for all $z \in I$ and so μ_x is a stationary measure. We should also check that the definition of μ_x isn't trivial. That is, $\mu_x(y) \in (0, \infty)$. First, note

that $\mu_x(x) = 1/\lambda_x$ since the holding time at x is $\text{Exp}(\lambda_x)$. Secondly, since μ_x is stationary we know that $\mu_x p_t = \mu_x$ for any t > 0 and so

$$\frac{1}{\lambda_x} = \mu_x(x) = (\mu_x p_t)(x) \ge \mu_x(y) p_t(y, x).$$

Since X_t is irreducible we know that $p_t(y, x) > 0$ for any t > 0 and so $\mu_x(y) \le \frac{1}{\lambda_x p_t(y, x)} < \infty$.

To show that $\mu_x(y) > 0$, note that since (1) shows that $\mu_x(y)$ is the expected amount of time spent in y between visits to x, the strong Markov property implies that this is at least the probability of reaching y before returning to x times the expected amount of time spent in y before the first jump out of y. That is,

$$\mu_x(y) = E_x \left[\int_0^{T_x} \mathbf{1}_{X_t=y} dt \right] = E_x \left[\int_{V_y}^{T_x} \mathbf{1}_{X_t=y} dt \right]$$
$$= P_x(V_y < \infty) E_y \left[\int_0^{T_x} \mathbf{1}_{X_t=y} dt \right]$$
$$\ge P_x(V_y < \infty) E_y \left[\int_0^{\min_{z\neq y} T_z} \mathbf{1}_{X_t=y} dt \right]$$
$$= P_x(V_y < \infty) \frac{1}{\lambda_y}.$$

Since X_t is irreducible we have that $P_x(V_y < \infty) > 0$ and so $\mu_x(y) > 0$.

As in the case of discrete time Markov chains we can normalize μ_x to obtain a stationary distribution (at least when $E_x[T_x] < \infty$).

Corollary 2.1. If X_t is irreducible and positive recurrent, then a stationary distribution can be defined by

$$\pi(y) = \frac{\mu_x(y)}{E_x[T_x]}$$

for any $x \in I$.

Proof. This follows Theorem 1 and the fact that

$$\sum_{y} \mu_x(y) = \int_0^\infty \sum_{y} P_x(X_t = y, t < T_x) \, dt = \int_0^\infty P_x(t < T_x) \, dt = E_x[T_x].$$

2 Interpretations of the limiting distribution

If we know that a limiting distribution π exists then $\pi(j)$ is approximately the probability that the Markov process will be in state j at some very large time t. We will show in this section that $\pi(j)$ also is equal to the limiting fraction of time that the Markov process spends in state j. To make this precise, define

$$L_t(y) = \int_0^t \mathbf{1}_{X_s = y} ds.$$

Theorem 3. If X_t is irreducible and positive recurrent, then

$$\lim_{t \to \infty} \frac{L_t(y)}{t} = \frac{\mu_x(y)}{E_x[T_x]},$$

where the above limit holds with probability one, for any $x \in I$, and irrespective of the starting location. Moreover, since the limit is the same for any $x \in I$ we have that

$$\lim_{t \to \infty} \frac{L_t(y)}{t} = \frac{1}{\lambda_y E_y[T_y]}$$

To relate this limit to stationary distributions we need the following theorem.

Theorem 4. If X_t is irreducible and positive recurrent, then there is a unique stationary distribution π . Moreover, π has the formula

$$\pi(y) = \frac{1}{\lambda_y E_y[T_y]}.$$

Proof of Theorem 3. Suppose that the Markov chain starts at $X_0 = x$. Let $T_x = \tau_1 < \tau_2 < \tau_3 < \ldots$ be the times of successive returns to x and let

$$r_i = \int_{\tau_{i-1}}^{\tau_i} \mathbf{1}_{X_s = y} \, ds$$

be the amount of time spent in state y between times τ_{i-1} and τ_i (here we let $\tau_0 = 0$ by convention). Also, let

 $N(t) = \max\{n \ge 0 : \tau_n \le t\}$

be the number of returns to x by time t.

The law of large numbers from renewal theory (Theorem 3.1 in the book) implies that

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{E[\tau_1]} = \frac{1}{E_x[T_x]},\tag{3}$$

with probability one. Also, since the r_i are i.i.d., the law of large numbers implies that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} r_i = E[r_1] = E_x \left[\int_0^{T_x} \mathbf{1}_{X_t = y} \, dt \right] = \mu_x(y). \tag{4}$$

Now, since the definition of N(t) implies that $\tau_{N(t)} \leq t < \tau_{N(t)+1}$ we have that

$$\int_0^{\tau_{N(t)}} \mathbf{1}_{X_s=y} \, ds = \sum_{i=1}^{N(t)} r_i \le L_t(y) \le \sum_{i=1}^{N(t)+1} r_i = \int_0^{\tau_{N(t)+1}} \mathbf{1}_{X_s=y} \, ds$$

Therefore,

$$\frac{N(t)}{t} \frac{1}{N(t)} \sum_{i=1}^{N(t)} r_i \le \frac{L_t(y)}{t} \le \frac{N(t)+1}{t} \frac{1}{N(t)+1} \sum_{i=1}^{N(t)+1} r_i,$$

and so with probability one $L_t(y)/t$ is sandwiched between two terms that both converge to $\mu_x(y)/E_x[T_x]$.

We still need to show that the limit is the same even if the Markov process doesn't start at $X_0 = x$. To this end, suppose the Markov process starts at $X_0 = z \neq x$. Then define $\tau_1 = T_x$ to be the first visit to x and as above $\tau_2 < \tau_3 < \ldots$ are the successive visits to x. In this case, it is still true that (3) holds (this is the law of large numbers for a delayed renewal process) and that (4) holds as well (this is because $r_1 < \infty$ and r_2, r_3, \ldots are i.i.d.).

The final claim of the Theorem that the limit is equal to $1/(\lambda_y E_y[T_y])$ follows by choosing x = y and noticing that $\mu_y(y) = 1/\lambda_y$.

Proof of Theorem 4. Theorem 3 implies that $L_t(y)/t \to \frac{1}{\lambda_y E_y[T_y]}$ for any initial distribution of X_0 . In particular, it holds if X_0 has an initial distribution π that is stationary. Therefore, the bounded convergence theorem implies that

$$\lim_{t \to \infty} E_{\pi} \left[\frac{L_t(y)}{t} \right] = \frac{1}{\lambda_y E_y[T_y]}.$$

On the other hand, the definition of $L_t(y)$ implies that

$$E_{\pi}\left[\frac{L_t(y)}{t}\right] = \frac{1}{t}E_{\pi}\left[\int_0^t \mathbf{1}_{X_s=y} \, ds\right] = \frac{1}{t}\int_0^t P_{\pi}(X_s=y) \, ds = \frac{1}{t}\int_0^t \pi(y) = \pi(y),$$

where we used that π was a stationary distribution in the second to last equality. Thus, we have shown that any stationary distribution π must satisfy $\pi(y) = \frac{1}{\lambda_y E_y[T_y]}$, and so π is unique.