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Poisson Arrivals See Time Averages 

RONALD W. WOLFF 
University of California, Berkeley, California 

(Received April 1981;accepted November 1981) 

In many stochastic models, particularly in queueing theory, Poisson arrivals 
both observe (see) a stochastic process and interact with it. In particular 
cases and/or under restrictive assumptions it has been shown that the 
fraction of arrivals that see the process in some state is equal to the fraction 
of time the process is in that state. In this paper, we present a proof of this 
result under one basic assumption: the process being observed cannot 
anticipate the future jumps of the Poisson process. 

POISSON PROCESSES are important components of many stochas- 
tic models, e.g., we often assume that customers arriving a t  a queue 

are Poisson. We can also represent exponential service in terms of a 
Poisson process, where Poisson "events" generate service completions 
only when the server is busy. For ease of exposition, we refer below to 
Poisson arrivals, usually a t  a queue. Our results, however, apply both to 
Poisson processes in other roles (e.g., departures) and to arbitrary (non- 
queueing) model contexts. 

It  is well known that in the case of the M/G/l  queue the fraction of 
arrivals who find n customers in system is equal to the fraction of time 
there are n customers there. More generally, a continuous-time stochastic 
process may be in some state (not necessarily in the Markov sense) a 
certain fraction of time. Suppose a Poisson stream of arrivals both 
observe and interact with this stochastic process, where each arrival may 
take the process into or out of the state. Then it will generally be true 
(under conditions to be specified) that the fraction of arrivals who find 
(observe or see) the process in a state is equal to the corresponding 
fraction of time. By Poisson arrivals see time averages, or simply 
PASTA, we mean the equality of these fractions. 

Owing to PASTA, we can choose to solve some problems in either 
discrete or continuous time, e.g., for Erlang's loss formula, see Sevas- 
tyanov [I9571 and Takacs [1969]. What is more important, PASTA is 

Subject classification: 597 Poisson process, 692 equality o f  time and arrival averages. 
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crucial information in the analysis of many problems, e.g., in Avi-Itzhak 
et al. [1965], Melamed [1978], Nozaki and Ross [1978], Wolff [1970], and 
Wolff and Wrightson [1976]. 

To use PASTA as an essential part of an analysis, one must be able to 
prove it in a way that does not involve independent derivations of time 
and arrival averages. Proofs of this nature are in Stidham [1972], Strauch 
[1970], and Wolff. 

Strauch's result is instantaneous; it applies to an arbitrary but fixed 
point on the time axis. It is not evident how to extend this result to obtain 
limit theorems. Wolff derived a limit theorem, but the process being 
observed was assumed to be stationary, and particular properties of the 
interaction of the Poisson stream with this process were used in the 
derivation. Stidham (see also Heyman and Sobel [1982]) obtains a limit 
theorem when the process being observed is regenerative, and also under 
what turn out to be unnecessary restrictions on the relation between 
Poisson arrivals and regeneration points. Some related results for station- 
ary processes may also be found in Franken et al. [1981]. 

In this paper, we present a simple proof of PASTA. Aside from 
technical conditions, our only assumption, formally defined below, is that 
the process being observed cannot anticipate the future jumps of the 
Poisson process. 

The proof depends on a martingale characterization of the Poisson 
process due to Watanabe [1964]. Hence, Equation 3 and Lemma 1 are 
not new. Proofs are included for completeness. Lemma 2, which is critical 
in applications, is new. 

1. 	PROBLEM FORMULATION AND STATEMENT OF THE MAIN 
RESULT 

Let N = {N(t), t r 0) be a stochastic process and A = {A(t), t m 0) be 
a Poisson process at rate h > 0, both defined on some probability space 
(52, P).N(t) will represent the status of a system at epoch t r 0, and A 
an arrival process of customers to the system. For example, if N(t) is the 
number of customers in system at  epoch t, it will increase by one a t  
customer arrival epochs. In general, we let N(t) take on values in an 
arbitrary measurable space, and the interaction between A and N is 
unspecified. 

Our objective is to compare the fraction of time N spends in some set, 
with the corresponding fraction of customers who see (find on arrival) 
the system in that set. For an arbitrary set B in the value space of N, 
called the state of N, such that {N(t) E B )  is measurable for every t 2 0, 
define 
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= 0 otherwise, 

We assume the sample paths of U are left continuous and have right- 
hand limits, w.p. 1, and that U is a jointly measurable function of 
(w,  t) E Q X [0, 03). 

With these definitions, V(t) is the fraction of time during [0, t] that N 
is in state B, Y(t) is the number of arrivals in [0, t] who find N in B, and 
Z(t) is the fraction of arrivals in [0, t] who find N in B. 

In the queueing example in the first paragraph of this section, left 
continuity means that the arrival is not counted as being in the system at  
the arrival epoch. While not customary for continuous time processes, 
the convention of left continuity has no effect on the length of time N(t) 
spends in any state. 

The latter assumption ensures that V(t) is a random variable for each 
t. Aside from the convention of left continuity, the sample paths of U 
belong to D[O, W )  w.p. 1, and have essentially the same properties. In 
particular, w.p. 1, U has only a finite number of discontinuities on any 
finite interval. Hence, for each w in a set that has probability one, Y(t) 
can be approximated arbitrarily closely by a function of the form 

for sufficiently large n. 
We expect the arrival process to affect the system in some way, i.e., the 

processes A and N are typically dependent. Consequently we expect A 
and U to be dependent. However, we assume the system has no antici- 
pation, i.e., we do not want the future increments of A to depend on the 
past of U. Formally, we make the 

Lack of Anticipation Assumption (LAA). For each t 3 0, {A(t + u) -
A(t),u r 0) and { U(s), 0 s r t) are independent. 

Our main result is 

THEOREM1. Under LAA, V(t)-, V(W) w.p. 1if and only if Z(t) -+ V(W) 
W.P. 1, a s  t + W. 

Remark 1. PASTA is true whenever convergence occurs. The only 
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reason for making stronger assumptions, e.g., that the system is regener- 
ative, stationary, or ergodic, is to prove convergence. 

Remark 2. While V(m)will typically be a constant, it need not be. For 
example, suppose N is a discrete-state Markov process with several 
absorbing states and initial transient state N(0)= i, such that i can reach 
each absorbing state and absorption is certain. If B is an absorbing state, 
V(m)is a random variable with P(V(m)E (0, 1 ) )  = 1,where P(V(m)= 1) 
is the probability of absorption in B. 

Remark 3. Formally, we could have started with the process U with-
out mentioning N. However, this would obscure the importance of 
Theorem 1 in applications. 

2. PROOF OF THEOREM 1 

From LAA, the expected value of (1)is 

Now let n + m and apply the bounded convergence theorem. 

i.e., on any finite interval, the expected number of arrivals who find the 
system in state B is equal to the arrival rate times the expected length of 
time it is there. Not only is this result crucial for what follows, it is 
interesting in its own right. 

Remark 4. Conditioned on A ( t ) ,the conditional expectations corre- 
sponding to (3) are typically not equal. For example, let A ( t )  be the 
arrival process and N(t )the number of customers in system a t  epoch t for 
an M / M / 1  queue, with N(0)= 0. Let B denote that the system is busy. 
Then E { Y ( t )  IA(t) = 1) = 0, but E { V ( t )  IA(t) = 1) > 0. 

Now define the process R,  

Theorem 1 is an easy consequence of the following two lemmas. 

LEMMA1. R is a continuous-time martingale. 

Proof. We need to show that for t r 0,h >0, the increments of R have 
the property 

Let 9% be the 0-field generated by {A(s ) ,  U(s);  0 5 s s t ) .From LAA and 
the independent-increments property of the Poisson process, we may 
repeat the argument used to derive (3) for any set in 9%: 



227 Poisson Arrivals See Time Averages 

Because the a-field generated by {R(s), 0 5 s 5 t) is a subset of 3,(5) is 
immediate. 

Remark 5. If we assume LAA, that R is a martingale, and that A 
is an increasing right-continuous function with jumps of size one-
Watanabe has shown that A is a Poisson process. Hence the martingale 
property is a characterization of a Poisson process. 

Proof From Y(t) IA(t) and V(t) 5 1, observe that 

From Lemma 1, the process {X,) defined by 

is a discrete-time martingale for any h > 0. 
By the same bounding argument used to obtain (7), 

From (9), 

by Theorem 3, p. 243, of Feller [1971]. Observe that because Y(t) is 
monotone and changes in tV(t) on an interval of length h are bounded by 
h, 

Now divide (11) by t and let t -+ CQ,where n(t) = [tlh] -+ w. The Lemma 
follows from (10). 

Finally, Theorem 1follows immediately from Lemma 2 and A(t)/t -+ 

h w.p. 1 by writing 

Remark 6. Under LAA, Lemma 2 implies other versions of Theorem 
1under weaker modes of convergence, e.g., in probability or in distribu- 
tion. An expected-value version follows directly from (3). 

3. NONSTATIONARY POISSON ARRIVALS 

When the rate of the Poisson process A(t), h(t), is a function of time, 
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Theorem 1may easily be generalized. (For a generalization of the mar- 
tingale characterization of Watanabe, see Bremaud and Jacod [1977].) 
Assume h(t) is bounded and integrable, and that the following limit 
exists: 

l i m  A t )  = , 0 < X < w, 

where A(t) = Jk h(s)ds, t t 0. Define an "arrival rate weighted time 
average": 

U(s)A(s)ds, t r 0. 

Otherwise, all assumptions and the notation are the same as before. 
Analogous to (3), we now have 

and, by essentially the same argument. 

THEOREM2. Under LAA, v(t) 'o V(m) w.p. 1if and only if Z(t) -+ V(m) 
w.p. 1, as t +m. 

Remark 7. The M/G/1  queue with nonstationary Poisson arrivals, 
where h(t) is a periodic function, was studied by Harrison and Lemoine 
[1977]. Their relation between distributions G and H on p. 567 follows 
from Theorem 2. 

4. CONCLUSION 

It is the independent-increments property of the Poisson process that 
really accounts for PASTA. For either stationary counting processes or 
renewal processes, only the (possibly compound) Poisson process has this 
property. Because other arrival processes in effect "anticipate them- 
selves," LAA will typically be false. 

Nevertheless, instances do occur where non-Poisson arrivals see time 
averages. In particular, for the M / M / 1  queue with feedback, Burke [I9761 
has shown that the composite stream of exogenous Poisson arrivals and 
feedback customers is not Poisson, even though it is easily shown that 
this stream sees time averages. Apparently, some of the simple state 
probability results for certain queueing networks are accounted for by 
non-Poisson composite arrival streams that see time averages. Interest- 
ingly, Burke uses PASTA in his proof. For his model, this property is of 
course well known. 

We close with two examples. Example 1 illustrates the versatility of 
PASTA in applications. Example 2 presents a situation where, for a 
model of some importance, PASTA is false. 
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Example 1. The GI/M/c queue with arrival rate X and service rate 
p/server. Let T, be the fraction of arrivals that find n customers in 
system, and let p, be the corresponding fraction of time, n = 0, 1, .. . . 

We want to show the following well known result: 

where p, = p min(c, n). We shall show (13) by equating transition rates 
(number of transitions per unit time) across the boundary between states 
n and n - 1. Clearly, XT,-~ is the transition rate from n - 1to n. 

To find the transition rate in the reverse direction, let {A(t)) be a 
Poisson event process a t  rate p, that generates departures when the 
number of customers in system is n, i.e., at  each of these events, a 
departure occurs if and only if the number in system is n. (In effect, we 
define a separate Poisson process for each state.) Let Y(t) be the number 
of transitions from n to n - 1in [0, t]. We have A(t)/t + p, w.p. 1and, 
from PASTA, Y(t)/A(t) +p, w.p. 1. Hence, 

the transition rate from n to n - 1, and we have (13). Extension: For 
{p,) an arbitrary function n, (13) is true. 

Example 2. Two single-channel queues in tandem with Poisson ar- 
rivals and exponential service, with the usual independence assumptions 
except that for each customer, the service times at  each station are the 
same random variable. Several recent papers, e.g. Pinedo and Wolff 
[1982], consider this model, because it captures an important feature of 
data transmission systems. 

It is well known that the departure process from an M/M/1 queue is 
Poisson. Thus the departure process from the first station is a Poisson 
arrival process at  the second. We shall compare time and arrival averages 
at  the second station, where {A(t)) is the arrival process at  that station 
and, for every t r 0, N(t) is the work there, i.e., N(t) is the sum of the 
service times of all customers in queue and the remaining service time of 
the customer in service, if any, at  the second station. Brumelle [I9711 has 
shown that the time average work, E(N) ,  has the following relation to D, 
a customer's delay in queue: 

where S is a customer service time, and D and S refer to the same 
customer. Analogous to " L = XW," E(N)  is a time average and the right- 
hand side of (14) is an average over customers. See Brumelle for formal 
definitions. Because the second station is single-channel (and customers 
are served in their order of arrival), E(D) is the average work seen by an 
arrival. 

Because this model is regenerative, it is easily shown that E(N)  and 
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E(D) are the respective means of the time average and arrival average 
work distributions. If PASTA were true, these distributions would be the 
same, and we would have E(N)  = E(D). 

It is easily seen that a customer's delay at the second station is a 
decreasing function of that customer's service time a t  the first. Hence D 
and S are negatively correlated, and 

Suppose for a moment that PASTA is true. From PASTA, (14), and (15), 
we easily obtain 

Specializing to exponential service, the expression on the right-hand side 
of (16) is the expected delay in queue for the standard MIMI1 queue. 
This would be the expected delay in queue at the second station if service 
times of the same customer were independent. However, Pinedo and 
Wolff show that under light traffic (small AE(S)), the inequality in (16) 
is reversed. Hence PASTA is false, at least in light traffic. On reflection, 
and, from Theorem 1,the only alternative, we see that LAA fails to hold. 
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