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1 Introduction

Matrix are important in the fields of mathematics and statistics, especially linear algebra, so
Andrew Hetzel, Jay Liew and Kent Morrison tried to find the probability that a 2 × 2 matrix
with integer entries in the interval[-k,k] is diagonalizable[1]. They stated that the probability of
diagonalizability is 49

72 . When they proved this, they considered the discriminant of characteris-
tic polynomial of a random matrix. However, this method is not useful for higher dimemsional
matrix such as 3×3 matrix, so in this paper we tried to find a more general method to compute
this probability, a method related to the joint density of trace and determinant of a 2×2 matrix.

2 Joint Density of Determinant and Trace

For a 2×2 matrix

(
X Y
Z W

)
, let A = X+W be the trace and B = XW −Y Z be determinant.

For getting the joint density of (A,B) = (X + W,XW − Y Z), we consider to use the method
of joint probability distribution of functions of random variables [2]. There are four random
variables X, Y , Z and W , for simplisity, we tried to find a method to reduce this problem in four
dimensions to two dimensions at first. Therefore we fix Y Z, then we can find the conditional
probability of A = X + W and B = XW − Y Z with fixed YZ. Then if we integrate out YZ
later, we can get the joint density of (A,B) = (X +W,XW − Y Z).

Theorem 2.1. For a 2× 2 matrix

(
X Y
Z W

)
, assume X,Y, Z,W are from continuous uniform

distribution in the interval [-1,1], then the joint density of the trace (A) and determinant (B)
is

fA,B(a, b) =



g1(a, b) if |a| − 2 < b < a2−4
4

g2(a, b) if a2−4
4 < b < |a| − 1

g3(a, b) if |a| − 1 < b < a2

4

g4(a, b) if a2

4 < b < |a|
g5(a, b) if |a| < b < a2+4

4

0 otherwise

where
g1(a, b) = 1

8

(
−2
√
−4 + a2 − 4b+ 2(2− |a|)− (2− |a|) log[−1− b+ |a|]

)
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g2(a, b) = 1
8

(
2(2− |a|)− (2− |a|) log[−1− b+ |a|]−

√
a2 − 4b log

[
−a2+(2−|a|)

√
a2−4b−2(−1+b+|a|)

2(1+b−|a|)

])
g3(a, b) = 1

8

(
−
√
a2 − 4b log

[
2+a2−2b+

√
a2−4b(2−|a|)−2|a|

2+2b−2|a|

]
− (2− |a|)(−2 + log[1 + b− |a|])

)
g4(a, b) = 1

8

(
−2
√

4b− a2 arctan
[

2−|a|√
4b−a2

]
+ 2(2− |a|)− (2− |a|) log[1 + b− |a|]

)
g5(a, b) = 1

4

(√
4 + a2 − 4b−

√
4b− a2 arctan

[√
4+a2−4b
4b−a2

])

Figure 1: joint density of trace and deter-
minant

Figure 2: Contour plot of joint density of
trace and determinant

Proof. Fix Y and Z, let S = Y Z. Then we have a system of equations of trace (labeled by a)
and determinant (labeled by b) {

a = x+ w

b = xw − s

Solve for x and w in terms of a, b and s (because s is a constant here), there are two solutions:

• solution 1:

{
x = a−

√
a2−4b−4s
2

w = a+
√
a2−4b−4s
2

• solution 2:

{
x = a+

√
a2−4b−4s
2

w = a−
√
a2−4b−4s
2

Recall that x and w are in [−1, 1], so a±
√
a2−4b−4s
2 is in [−1, 1]. Also it is easy to check that

a2− 4b− 4s ≥ 0, so a±
√
a2−4b−4s
2 is real. Because x in solution 1 is the same as w in solution 2,

and so is w in solution 1, |J(x,w)|−1 and fX,W (x,w) are the same no matter which solutions
we take, thus the joint density of (A,B|S) can be obtained by using the joint density of (X,W )
such that

fA,B,S(a, b|s) = 2fX,W (x,w)|J(x,w)|−1 (1)

Without loss of generality, we use sulution 1: x = a−
√
a2−4b−4s
2 and w = a+

√
a2−4b−4s
2 .

Then

J(x,w) =

∣∣∣∣ ∂a
∂x

∂a
∂w

∂b
∂x

∂b
∂w

∣∣∣∣ =

∣∣∣∣ 1 1
w x

∣∣∣∣ = x− w (2)

Since X and W have continuous uniform distribution independently in the interval [-1,1], the
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joint density of (X,W ) is

fX,W (x,w) =

{
fX(x)fW (w) = 1

2 ×
1
2 = 1

4 if x,w ∈ [−1, 1]

0 otherwise
(3)

Plugging (2) and (3) into (1) and substituting solution 1 :

fA,B,S(a, b|s) = 2fX,W (x,w)|J(x,w)|−1

=
1

2|x− w|

=
1

2
√
a2 − 4b− 4s

Therefore the joint density of the trace (A) and determinant (B) is given by

fA,B(a, b) =

∫
s
fA,B,S(a, b|s)fS(s) ds (4)

Note:Here are two lemmas where the proofs of them are in section 4.
Lemma 4.1:
For two independent random variables Y and Z from continous uniform distribution between
-1 and 1, the distribution of Y Z is

fY Z(s) = − log [|s|]
2

where s ∈ [−1, 1].
Lemma 4.2:

For a 2 × 2 matrix

(
x y
z w

)
, assume x, y, z, w are in the interval [-1,1] and s = yz,then the

region for s, trace (a) and determinant (b) is given by

(i) |a| − 1− b ≤ s ≤ a2−4b
4

(ii) −1 < s < 1

From above lemmas, the joint distribution of (A,B) which are trace and determinant of a 2×2
matrix becomes

fA,B(a, b) =

∫
s
fA,B,S(a, b|s)fS(s) ds =

∫
|a|−1−b≤s≤a2−4b

4
,−1≤s≤1

− log[|s|]
4
√
a2 − 4b− 4s

ds (5)

For getting fA,B(a, b) in equation (5), we have five cases:

I. 0 < |a| − 1− b < 1 < a2−4b
4

II. 0 < |a| − 1− b < a2−4b
4 < 1

III. −1 < |a| − 1− b < 0 < a2−4b
4 < 1

IV. −1 < |a| − 1− b < a2−4b
4 < 0

V. |a| − 1− b < −1 < a2−4b
4 < 0
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Figure 3: Contour plot of joint density of trace and determinant, where yellow is the case I,
orange is the case II, red is case III, blue is case IV and purple is case V

Note: Now we introduce a lemma to help us get fA,B(a, b). Again, the proof of this lemma is
in section 4.

Lemma 2.2. Fix a and b. Given that

f(a, b, s) =


f1(a, b, s) if 0 < 4s < a2 − 4b

f2(a, b, s) if 4s < 0 < a2 − 4b

f3(a, b, s) if 4s < a2 − 4b < 0

0 otherwise

where

f1(a, b, s) = log[2]
√
a2 − 4b− 4s−

√
a2−4b−4s log[4s]

2 +
√
a2 − 4b− 4s−

√
a2−4b
2 log

[ √
a2−4b−4s+

√
a2−4b

−
√
a2−4b−4s+

√
a2−4b

]
f2(a, b, s) = log[2]

√
a2 − 4b− 4s−

√
a2−4b−4s log[−4s]

2 +
√
a2 − 4b− 4s−

√
a2−4b
2 log

[√
a2−4b−4s+

√
a2−4b√

a2−4b−4s−
√
a2−4b

]
f3(a, b, s) = log[2]

√
a2 − 4b− 4s−

√
a2−4b−4s log[−4s]

2 +
√
a2 − 4b− 4s−

√
4b− a2 arctan

[√
a2−4b−4s
4b−a2

]
Then

∂

∂s
f(a, b, s) =

log[|s|]√
a2 − 4b− 4s

Remark 2.3. It is easy to check this lemma by finding derivatives directly for interiors of each
case. But it is important to note that it is defined for boundary points so it is continuous
(we will left them to you to check out). And we will use this lemma to compute the integral∫
s

log[|s|]√
a2−4b−4s ds.

With this lemma, let us get the fA,B(a, b) case by case.
In case (I):

0 < |a| − 1− b < 1 < a2−4b
4 , |a| − 1− b < s < a2−4b

4 and −1 < s < 1, so 0 < |a| − 1− b < s < 1

and domian of a and b is |a| − 2 < b < a2−4
4 , −2 < a < 2. By using the formula in Lemma 2.2
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when s is positive.

fA,B(a, b) =

∫ 1

|a|−1−b
− log[s]

4
√
a2 − 4b− 4s

ds

= −1

4
[f1(a, b, 1)− f1(a, b, |a| − 1− b)]

=
1

8

(
−2
√
−4 + a2 − 4b+ 2(2− |a|)− (2− |a|) log[−1− b+ |a|]

)
= g1(a, b) (6)

In case (II):

0 < |a| − 1− b < a2−4b
4 < 1, |a| − 1− b < s < a2−4b

4 and −1 < s < 1, so |a| − 1− b < s < a2−4b
4

and domian of a and b is a2−4
4 < b < |a| − 1, −2 < a < 2. By using the formula in Lemma 2.2

when s is positive.

fA,B(a, b) =

∫ a2−4b
4

|a|−1−b
− log[s]

4
√
a2 − 4b− 4s

ds

= −1

4

[
f1(a, b,

a2 − 4b

4
)− f1(a, b, |a| − 1− b)

]
=

1

8
(2(2− |a|)− (2− |a|) log[−1− b+ |a|

−
√
a2 − 4b log

[
−a

2 + (2− |a|)
√
a2 − 4b− 2(−1 + b+ |a|)

2(1 + b− |a|)

]
)

= g2(a, b) (7)

In case (III):

−1 < |a|−1−b < 0 < a2−4b
4 < 1 |a|−1−b < s < a2−4b

4 and −1 < s < 1, so |a|−1−b < s < a2−4b
4

and domain of a and b is |a| − 1 < b < a2

4 , −2 < a < 2. By using the formula in Lemma 2.2
when s is positive and when s is negative, a2 − 4b is positive.

fA,B(a, b) =

∫ a2−4b
4

|a|−1−b
− log[|s|]

4
√
a2 − 4b− 4s

ds

=

∫ 0

|a|−1−b
− log[−s]

4
√
a2 − 4b− 4s

ds+

∫ a2−4b
4

0
− log[s]

4
√
a2 − 4b− 4s

ds

= −1

4

[
f1(a, b, 0)− f1(|a| − 1− b) + f2(a, b,

a2 − 4b

4
)− f2(a, b, 0)

]
=

1

8

(
−
√
a2 − 4b log

[
2 + a2 − 2b+ (2− |a|)

√
a2 − 4b− 2|a|

2 + 2b− 2|a|

]
− (2− |a|)(−2 + log[1 + b− |a|])

)
= g3(a, b) (8)

In case (IV):

−1 < |a|−1− b < a2−4b
4 < 0, |a|−1− b < s < a2−4b

4 and −1 < s < 1, so |a|−1− b < s < a2−4b
4

and domain of a and b is a2

4 < b < |a| and −2 < a < 2. Because s and a2 − 4b are negative, we
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use the formula in Lemma 2.2 when s and a2 − 4b are neagative to get fA,B(a, b).

fA,B(a, b) =

∫ a2−4b
4

|a|−1−b
− log[−s]

4
√
a2 − 4b− 4s

ds

= −1

4

[
f3(a, b,

a2 − 4b

4
)− f3(a, b, |a| − 1− b)

]
=

1

8

(
−2
√

4b− a2ArcTan
[

2− |a|√
4b− a2

]
+ 2(2− |a|)− (2− |a|) log[1 + b− |a|]

)
= g4(a, b) (9)

In case (V) :

we have |a|−1−b < −1 < a2−4b
4 < 0, |a|−1−b < s < a2−4b

4 and −1 < s < 1, so −1 < s < a2−4b
4

and domain of a and b is |a| < b < a2+4
4 and −2 < a < 2. Because s and a2 − 4b are negative,

we use the formula in Lemma 2.2 when s and a2 − 4b are negative.

fA,B(a, b) =

∫ a2−4b
4

−1
− log[−s]

4
√
a2 − 4b− 4s

ds

= −1

4

[
f3(a, b,

a2 − 4b

4
)− f3(a, b,−1)

]
=

1

4

(√
4 + a2 − 4b−

√
4b− a2ArcTan

[√
4 + a2 − 4b

4b− a2

])
= g5(a, b) (10)

3 The Probability That a 2×2 Matrix Have All Real Eigenvalues

After getting the joint density of trace and determinant of a random 2×2 matrix, we show how
a random 2× 2 matrix has all real eigenvalues.

Corollary 3.1. For a 2×2 matrix

(
X Y
Z W

)
, assume X,Y, Z,W are from continuous uniform

distribution in the interval [-1,1], then the probability that this matrix is diagonalizable over R
is 49

72 .

Proof. For the a 2 × 2 matrix

(
X Y
Z W

)
, the characteristic polynomial is λ2 − (X + W )λ +

(WX − Y Z) = λ2 − (trace)λ+ (determinant). Let A be the trace and B be the determinant,
then the discriminant of λ2− (X +W )λ+ (XW −Y Z) = λ2− (trace)λ+ (determinant) = 0 is
(X+W )2−4(XW −Y Z) = A2−4B. Therefore the discriminant (A2−4B) should be positive,

for all real eigenvalues, which is the same as B < A2

4 . Thus the probability that a 2× 2 matrix
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has all real eigenvalues is given by

P (all eigenvalues are real) = P (B <
A2

4
)

= 1− P (B >
A2

4
)

= 1−
∫∫

b>a2

4

fA,B(a, b) db da (11)

From Theorem 2.1, we know that b > a2

4 has two parts: a2

4 < b < |a| and |a| < b < a2+4
4 .

∫∫
b>a2

4

fA,B(a, b) db da =

∫∫ |a|
a2

4

fA,B(a, b) db da+

∫∫ a2+4
4

|a|
fA,B(a, b) db da (12)

For simplicity, we can integrate these two integrals one by one.
For the first integral, ∫∫ |a|

a2

4

fA,B(a, b) db da = 2

∫ 2

0

∫ a

a2

4

fA,B(a, b) db da (13)

From Theorem 2.1, integral in (13) becomes

1

4

∫ 2

0

∫ a

a2

4

−2
√

4b− a2 arctan

[
2− a√
4b− a2

]
+ 2(2− a)− (2− a) log[1 + b− a] db da

=
1

4

∫ 2

0

∫ a

a2

4

−2
√

4b− a2 arctan

[
2− a√
4b− a2

]
db da

+
1

4

∫ 2

0

∫ a

a2

4

2(2− a) db da

− 1

4

∫ 2

0

∫ a

a2

4

(2− a) log[1 + b− a] db da (14)

There are two lemmas we need for the first and third integrals above (the second one can be
obtained by general calculus method).
Lemma 4.3:

2

∫ 2

0

∫ a

a2

4

√
4b− a2 arctan

[
2− a√
4b− a2

]
db da =

1

4
(−4 + π2)

Lemma 4.4: ∫ 2

0

∫ a

a2

4

(2− a) log[1 + b− a] db da = −1

2

Then sum of three integrals in (14) is

1

4

(
−1

4
(−4 + π2)

)
+

1

4
2− 1

4

(
−1

2

)
=

1

4

(
5

2
+

1

4
(4− π2)

)
(15)
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For the second integral in (12),

∫∫ a2+4
4

|a|
fA,B(a, b) db da = 2

∫ 2

0

∫ a2+4
4

a
fA,B(a, b) db da (16)

From Theorem 2.1, integral in (16) becomes

1

2

∫ 2

0

∫ a2+4
4

a

√
4 + a2 − 4b−

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db da

=
1

2
× 2

3
− 1

2

∫ 2

0

∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db da (17)

For getting the final result, we introduce lemma 4.5 such that

∫ 2

0

∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db da =

16

9
− π2

8

Note: you can simply find
∫ 2
0

∫ a2+4
4

a

√
4 + a2 − 4b db da by using the general method in calculus.

Then integral (17) is given by

1

3
− 1

2

(
16

9
− π2

8

)
= −5

9
+
π2

16

Combine with the result of first integral (16), the probability in (11) is

1− 1

4

(
5

2
+

1

4
(4− π2)

)
−
(
−5

9
+
π2

16

)
=

49

72

4 Important Lemmas With Their Proofs

You may notice that we used many lemmas in the previous proof, now we state those lemma
and their proofs here.

Lemma 4.1. For two independent random variables Y and Z from continous uniform distri-
bution between -1 to 1, the distribution of yz is

fY Z(s) = − log [|s|]
2

where s ∈ [−1, 1].

Proof. Y (or Z) is from continuous uniform distribution between -1 and 1, so its probability
density function is f(y) = 1

2 and −1 < yz < 1. Because Y and Z are independent random
variables, the joint density of (Y, Z) is the product of their probability density functions, which
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is f(y)f(z) = 1
2 ×

1
2 = 1

4 on [−1, 1]× [−1, 1].
Let s = yz and FY Z(s) be the cumulatice distribution function of Y Z. Then

FY Z(s) = P (yz < s) =

∫∫
yz<s

y∈[−1,1]
z∈[−1,1]

f(y, z) dy dz =

∫∫
yz<s

y∈[−1,1]
z∈[−1,1]

1

4
dy dz

For simplicity, we evaluate the integral by two cases: (i) s ∈ [0, 1], (ii) s ∈ [−1, 0].
In case (i):

FY Z(s) =
1

2
(1 + s− s log[s])

And by symmetry, in case (ii), we have FY Z(s) = 1
2 (1 + s− s log[−s]).

To combine two cases, the cumulative distribution function of Y Z is FY Z(s) = 1
2 (1 + s− s log[|s|]).

Because the probability density function of Y Z is the derivative of cumulative distribution func-
tion of Y Z respect to s, the density of Y Z is fY Z(s) = − log[|s|]

2 where S ∈ [−1, 1].

Lemma 4.2. let A = trace

(
X Y
Z W

)
= x+w, B = det

(
X Y
Z W

)
= XW − Y Z and S = Y Z.

Assume X,Y, Z,W are in the interval [-1,1], then the joint density fA,B,S(a, b, s) is nonzero if
and only if{
|a| − b− 1 ≤ s ≤ a2−4b

4

−1 ≤ s ≤ 1

Figure 4: Region of (a,b,s)

Proof. First, any value of s ∈ (−1, 1) is possible since s = yz where y, z ∈ (−1, 1).
For s fixed, the values of determinant and trace are{
a = x+ w

b = xw − s
So the domain of joint density fA,B,S(a, b, s) can be obtained by fixing s then shifting from -1
to 1. When s = 0, a = x + w and b = xw where x,w ∈ (−1, 1). So the domain in terms of x
and w is as followed:

For transforming the interior points on xw-plane, we look at the lines w = x + c where
c ∈ (−1, 1). Then interior points can be transformed by (x, x+ c)→ (x2 + cx, 2x+ c) = (b, a)
where
(I) x ∈ (−1, 1− c) and c ∈ (0, 1);
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(II) x ∈ (−1− c, 1) and c ∈ (−1, 0).

In case (I), all points should be on the left side of a2−4b
4 . With the boundaries, the graph is

shown below:
Similarly, in case (II) we have the same region as in case (I).

Figure 5: On the left are the lines w = x+c. On the right are the curves (b, a) = (2x+c, x2+cx).

Remark: In case (I), we transformed points below the diagonal. In case (II), we transformed
points above the diagonal. But both cases have the same region after transformation, so the
mapping is actually 2 to 1.
Now we transform the domain for nonzero fA,B,S(a, b, s) with fixed s = 0 on xw-plane into

ba-plane such that |a| − b− 1 ≤ s ≤ a2−4b
4 .

Lemma 4.3.

2

∫ 2

0

∫ a

a2

4

√
4b− a2 arctan

[
2− a√
4b− a2

]
db da =

1

4
(−4 + π2)

Proof. Let u = 1
6(4b− a2)

3
2 , then du =

√
4b− a2 db . By substitution, the integral becomes

2

∫ 2

0

∫ 1
6
(4a−a2)

3
2

0
arctan

[
(2− a)6−

1
3u−

1
3

]
du da (18)

Now we introduce a derivative that you can easily check.
Derivative:
If f(c, u) = 1

2

(
−c3 log

[
c2 + u

2
3

]
+ cu

2
3 + 2u arctan

[
cu−

1
3

])
on u, c > 0 , then

∂

∂u
f(c, u) = arctan

[
cu−

1
3

]
(19)

Because of this derivative, the integral (18) becomes

−4

9
log

[
4

3

]
+

2

3
+

1

3

∫ 2

0
(4a− a2)

3
2 arctan

[
(2− a)(4a− a2)−

1
2

]
da+

1

3
− 4

9
log

[
4

3

]
(20)

To evaluate the integral in (20), let u = arctan
[

2−a√
4a−a2

]
and dv = −(4a − a2)

3
2 da, then by
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integral by part, we have∫
−(4a− a2)

3
2 arctan

[
(2− a)(4a− a2)−

1
2

]
da

= arctan
[
(2− a)(4a− a2)−

1
2

]((2− a)(4a− a2)
3
2

4
+

3(2− a)(4a− a2)
1
2

2
+ 6 arcsin

[
2− a

2

])

− (2− a)2

2
+

(2− a)4

16
− 3(2− a)2

4
+ 6

∫
arcsin

[
2− a

2

]
(4a− a2)−

1
2 da (21)

To find −6
∫

arcsin
[
2−a
2

]
(4 − (2 − a)2)−

1
2 da in (21), substitute g = arcsin

[
2−a
2

]
and dg =

−1√
4a−a2 da,

−6

∫
arcsin

[
2− a

2

]
(4a− a2)−

1
2 da = 6

∫
g dg

= 3

(
arcsin

[
2− a

2

])2

Therefore above equation (21) is given by

∫
−(4a− a2)

3
2 arctan

[
(2− a)(4a− a2)−

1
2

]
da

= arctan
[
(2− a)(4a− a2)−

1
2

]((2− a)(4a− a2)
3
2

4
+

3(2− a)(4a− a2)
1
2

2
+ 6 arcsin

[
2− a

2

])

− (2− a)2

2
+

(2− a)4

16
− 3(2− a)2

4
− 3

(
arcsin

[
2− a

2

])2

(22)

Plug (22) into (20),

2

∫ 2

0

∫ 1
6
(4a−a2)

3
2

0
arctan((2− a)6−

1
3u−

1
3 ) du da =

1

4
(−4 + π2)

Lemma 4.4. ∫ 2

0

∫ a

a2

4

(2− a) log[1 + b− a] db da = −1

2

Note: We will left the calculation of this integral, you can check it with Mathematica.

Lemma 4.5. ∫ 2

0

∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db da =

16

9
− π2

8

11



Proof. We first integrate
√

4b− a2 arctan
[√

4+a2−4b
4b−a2

]
over b and we can integrate it by using

the method of integration by part. Let u = arctan
(√

4+a2−4b
4b−a2

)
and dv = 4

√
4b− a2 db. Then

∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db = −1

6
(4a− a2)

3
2 arctan

[
2− a√
4a− a2

]

+
1

12

∫ a2+4
4

a
4

√
(4b− a)2

4− 4b+ a2
db (23)

In order to evaluate the integral in (23), substitute s =
√

4− 4b+ a2, ds = − 2√
4−4b−a2 db, so

∫ a2+4
4

a
4

√
(4b− a)2

4− 4b+ a2
db = −2

∫ 0

2−a
4− s2 ds = 16− 8a− 2

3
(2− a)3

Then equation (23) is given by∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db = −1

6
(4a− a2)

3
2 arctan

[
2− a√
4a− a2

]
+

4

3
− 2a

3
− 1

18
(2− a)3 (24)

Now we can find the whole integral by using formula (24).∫ 2

0

∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db da

=

∫ 2

0
−1

6
(4a− a2)

3
2 arctan

[
2− a√
4a− a2

]
da+

10

9
(25)

To evaluate the integral in (25), let u = arctan
[

2−a√
4a−a2

]
and dg = −(4a − a2)

3
2 da. Then by

using the method of integral by part,

−1

6

∫ 2

0
(4a− a2)

3
2 arctan

[
2− a√
4a− a2

]
da =

2

3
− π2

8
(26)

Now substitute back for (26), (25) becomes∫ 2

0

∫ a2+4
4

a

√
4b− a2 arctan

[√
4 + a2 − 4b

4b− a2

]
db da =

2

3
− π2

8
+

10

9
=

16

9
− π2

8
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