The probability that a polynomial with integer coefficients has all real roots

Lirong Yuan
Department of Mathematics
Purdue University

October 22, 2012

Problem

What is the probability that a polynomial with random integer coefficients has all real roots?

How to choose a random integer?

Choose uniformly from $\{-k,-k+1, \ldots, k\}$

Problem

What is the probability that a polynomial with random integer coefficients has all real roots?

How to choose a random integer?

- Choose uniformly from $\{-k,-k+1, \ldots, k\}$.
- Let $k \rightarrow \infty$.

Random Linear Polynomial

$p(x)=A_{1, k} x+A_{0, k}$, $A_{1, k}, A_{0, k}$ random integers in $[-k, k]$

Question: what is the probability that $p(x)$ has all real roots? Answer:

Solve $p(x)=0$

$$
\begin{aligned}
& x=-\frac{A_{0, k}}{A_{1, k}} \text { is real } \Longleftrightarrow A_{1, k} \neq 0 \\
& P_{k}=\frac{2 k(2 k+1)}{(2 k+1)^{2}} \\
& P=\lim _{k \rightarrow \infty} P_{k}=1
\end{aligned}
$$

Random Quadratic Polynomial

$p(x)=A_{2, k} x^{2}+A_{1, k} x+A_{0, k}$,
$A_{0, k}, A_{1, k}, A_{2, k}$ random integers in [-k,k]

Question: what is the probability that $p(x)$ has all real roots? Answer:

$$
\begin{aligned}
& \text { Solve } p(x)=0 \\
& x \text { is real } \Longleftrightarrow A_{1, k}^{2}-4 A_{0, k} A_{2, k} \geq 0 \\
& P=?
\end{aligned}
$$

Solution:

Define F on \mathbb{R}^{3} :
$F(A, B, C)=1$ if $A^{2}-4 B C>0$, $F(A, B, C)=0$ elsewhere.

$$
\begin{aligned}
N(k, 3) & =\sum_{A=-k}^{k} \sum_{B=-k}^{k} \sum_{C=-k}^{k} F(A, B, C) \\
& =k^{3} \sum_{A=-k}^{k} \sum_{B=-k}^{k} \sum_{C=-k}^{k} F\left(\frac{A}{k}, \frac{B}{k}, \frac{C}{k}\right) \Delta\left(\frac{C}{k}\right) \Delta\left(\frac{B}{k}\right) \Delta\left(\frac{A}{k}\right)
\end{aligned}
$$

where, for example, $\Delta\left(\frac{A}{k}\right)$ represents the change in $\frac{A}{k}$, that is, $\frac{1}{k}$.

Proof

Since $T(k, 3)=(2 k+1)^{3}$, thus

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{N(k, 3)}{T(k, 3)} \\
& =\lim _{k \rightarrow \infty} \frac{k^{3}}{(2 k+1)^{3}} \sum_{A=-k}^{k} \sum_{B=-k}^{k} \sum_{C=-k}^{k} F\left(\frac{A}{k}, \frac{B}{k}, \frac{C}{k}\right) \Delta\left(\frac{C}{k}\right) \Delta\left(\frac{B}{k}\right) \Delta\left(\frac{A}{k}\right) \\
& =\frac{1}{8} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} F(A, B, C) d C d B d A \text { since } F \text { is Riemann integrable } \\
& =\frac{1}{72}(41+3 \log 4)
\end{aligned}
$$

Proof

Therefore, we have

$$
P(3)=\frac{1}{8} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} F(A, B, C) d C d B d A=\frac{1}{72}(41+3 \log 4)
$$

Theorem

Discrete:

$$
\begin{aligned}
& f_{k, n}(x)=A_{n, k} x^{n}+A_{n-1, k} x^{n-1}+\ldots+A_{1, k} x+A_{0, k} \\
& A_{j, k} \text { random integers in }\{-k,-k+1, \ldots, k-1, k\} \\
& P(k, n)=\frac{N(k, n)}{T(k, n)}
\end{aligned}
$$

Continuous:

$$
\begin{aligned}
& f_{n}(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0} \\
& A_{k} \in[-1,1] \text { uniformly random } \\
& P(n)
\end{aligned}
$$

Theorem

Discrete:

$$
\begin{aligned}
& f_{k, n}(x)=A_{n, k} x^{n}+A_{n-1, k} x^{n-1}+\ldots+A_{1, k} x+A_{0, k} \\
& A_{j, k} \text { random integers in }\{-k,-k+1, \ldots, k-1, k\} \\
& P(k, n)=\frac{N(k, n)}{T(k, n)}
\end{aligned}
$$

Continuous:

$$
f_{n}(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}
$$

$A_{k} \in[-1,1]$ uniformly random

$$
P(n)
$$

Theorem

Discrete:

$$
\begin{aligned}
& f_{k, n}(x)=A_{n, k} x^{n}+A_{n-1, k} x^{n-1}+\ldots+A_{1, k} x+A_{0, k} \\
& A_{j, k} \text { random integers in }\{-k,-k+1, \ldots, k-1, k\} \\
& P(k, n)=\frac{N(k, n)}{T(k, n)}
\end{aligned}
$$

Continuous:

$$
f_{n}(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}
$$

$A_{k} \in[-1,1]$ uniformly random

$$
P(n)
$$

Theorem

$\lim _{k \rightarrow \infty} P(k, n)=P(n)$

General Approach

Discrete problem \rightarrow Continuous problem

Riemann Sum works when F is "almost" continuous

F is continuous except on a set of measure zero

General Approach

$$
\begin{gathered}
f(x)=A_{n} x^{n}+\ldots+A_{1} x+A_{0} \\
F\left(A_{n}, \ldots, A_{1}, A_{0}\right)= \begin{cases}1 & \text { if } f \text { has all real roots } \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Discriminant } D(f)=\prod_{i<j}\left(r_{i}-r_{j}\right)^{2}=p\left(A_{n}, A_{n-1}, \ldots, A_{0}\right) \\
& p\left(A_{n}, A_{n-1}, \ldots, A_{0}\right)=0 \text { on a set of measure zero. }
\end{aligned}
$$

Rouche's Theorem

Abstract

Theorem (Rouche's Theorem) If $|f(z)-g(z)| \leq|f(z)|$ for z on a contour γ, then f and g have the same number of zeros inside γ.

Small change in coefficients \Rightarrow small change in roots.

Result

Since F is almost continuous except at points where $f(x)$ has double roots, thus

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left(P\left(A_{n, k} x^{n}+\ldots+A_{1, k} x+A_{0, k} \text { has all real roots }\right)\right) \\
& =P\left(A_{n} x^{n}+\ldots+A_{1} x+A_{0} \text { has all real roots }\right)
\end{aligned}
$$

Application

$p(x)=A_{3, k} x^{3}+A_{2, k} x^{2}+A_{1, k} x+A_{0, k}$,
$A_{j, k}(0 \leq j \leq 3)$ random integers in [$-k, k$]
Question: what is the probability that $p(x)$ has all real roots?
Answer: Cubic Discriminant

$$
D\left(A_{3}, A_{2}, A_{1}, A_{0}\right)=A_{1}^{2} A_{2}^{2}-4 A_{0} A_{2}^{3}-4 A_{1}^{3} A_{3}+18 A_{0} A_{1} A_{2} A_{3}-27 A_{0}^{2} A_{3}^{2}
$$

$F\left(A_{3}, A_{2}, A_{1}, A_{0}\right)= \begin{cases}1 & \text { if } D \geq 0 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\lim _{k \rightarrow \infty} P(k, n) & =P(n)=\frac{1}{16} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} F d A_{3} d A_{2} d A_{1} d A_{0} \\
& \approx 0.2219
\end{aligned}
$$

Question

Questions?

