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Abstract. The Colley Matrix Method avoids the issue of singular matrices to provide a
simple method for ranking teams without bias or ad hoc adjustments. When modifying the
Colley Method to use a pure win percentage, the resulting equivalent matrix equation is no
longer full rank causing a complication of the method. There is a simple solution that still
exists through a closer analysis of the methodology.

1. Introduction

Before the Bowl Championship Series, the National Collegiate Athletic Association had
multiple football teams claiming to be the national champions depending on what newspaper
or coaches polls had which school ranked number one at the end of the season. In 2003 this
discrepancy between rankings and polls resulted in the selection of LSU and USC as co-
national champions.

The question of how to rank head-to-head competition has resulted in a variety of methods
to determine who is ”best.” Whether determining which sports team is the best in the league,
which page is the best fit in a Google search, or what movie suggestions to make on Netflix,
there is a definitive need for a methodology of pairwise comparisons.

The challenge in determining rankings arises over arguments in what factors should be
considered. With respect to sports (which will be the focus of this paper), many argue that
win margin, strength of schedule, home field advantage, and a myriad of other factors should
be accounted for to give an accurate picture and representation of the current standings.
Ideally, a ranking methodology should be simple and easy to understand, easily computed,
bias-free, and objective.

In 2002, Wes Colley published his methodology for how to rank collegiate football team
[1]. The goal was a simple methodology founded in two basic principles:

• Rankings should reflect wins and losses only, not the margin of victory
• Strength of schedule should be accounted for by the rankings in some methodology

This paper will discuss the original methodology offered and used by Wes Colley, the
challenges that arise from using a pure win percentage rather than the modified percentage
used by Colley, a proposed solution to that challenge, and an example illustrating the slight
differences between these models.
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2. Iterative Scheme

Colley begins his ranking through an iterative process that updates the rank of the team
after each step. Each team begins with an initial ranking of one plus their number of wins
over two plus their number of total games played, or

(1) ri =
1 + nw,i
2 + ntot,i

.

Hence before any games have been played, all teams have an unbiased ranking of 1
2
. This

equality prior to play removes conference or historic bias allowing the rankings to solely
update based on current season play. To motivate the need for iterative updating, we simply
acknowledge that in NCAA DI Football or Basketball the strength of schedule can vary
greatly even within conference play and there is no guarantee that all teams have played
teams of the same skill level.

First we define the effective number of wins as Colley states in order to adjust for strength
of schedule. The purpose is essentially a weighting on the value of the wins (or losses) against
teams based on their opponent’s rating. The effective number of wins is

neffw,i =
nw,i − nl,i

2
+
∑
j

Gi,j · rj,

where rj is the ranking of the jth team, nw,i and nl,i are the number of wins and loses of the
ith team (respectively), and Gi,j is the number of games played between teams i and j. Note

that if all opponents have a ranking of 1
2

then neffw,i will equal the actual number of wins for
team i.

The iterative method works by calculating r for each team, then calculating neffw,i , recalcu-
lating r with the new number effective wins, then recalculating the effective number of wins
with the new ranking, so on and so forth.

In order to obtain the final Colley ranking, one simply takes the limit of the rankings given
by the iterative scheme. The existence of this limit and a simple method for computation of
the limit can be obtained using linear algebra.

3. As a Matrix Equation

For small groups of teams, these calculations may be relatively simple. However, as the
number of teams involved grows, it becomes worthwhile to look at this iterative method as
a system of equations.
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In order to write these rankings in matrix form, it is necessary to define a matrix C and
a column vector b where

Ci,j =
Gi,j

2 + ntot,i
,

bi =
1 +

nw,i−nl,i

2

2 + ntot,i
.

If there are N teams, then C is an N ×N matrix and b is a column vector of length N . The
matrix C and the vector b are related to the iterative Colley scheme in that if the original
ranking is r0 given by the modified win percentage in (1), then the modified ranking after
one iteration is given by

r1 = b + Cr0.

because the entry (1, j) of each side is equivalent.

rj1 =
1 + neffw,j

2 + ntot,j
=

1 +
nw,j−nl,j

2
+
∑

j(Gi,j · rj0)
2 + ntot,j

=
1 +

nw,j−nl,j

2

2 + ntot,j
+

∑
j(Gi,j · rj0)
2 + ntot,j

=
1 +

nw,j−nl,j

2

2 + ntot,j
+
∑
j

(
Gi,j

2 + ntot,j
· rj0)

= (b+ Cr0)j.

Continuing to iterate using the Colley method gives a sequence of rankings r1, r2, r3, . . . with
formulas given by

r1 = b + Cr0

r2 = b + Cr1 = b + Cb + Cr0
...

rn =
n−1∑
k=0

Ckb + Cnr0.

4. Solution to the Matrix Equation

In order to calculate the final ranking, we would use an infinite number of iterations, or
r∞. Following from rn = b + Crn−1, then

lim
n→∞

rn = lim
n→∞

n−1∑
k=0

Ckb + Cnr0.

When evaluating this limit and to ensure the existence of a solution, we note that C is
non-negative, primitive, and irreducible (since a reducible matrix implies comparing two sets
of teams where teams in one set do not play any teams in the other set). We also note that
by construction, all row sums

∑n
j=1Ci,j are strictly less than one. This implies that the
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spectral radius ρ(C) < 1. Then by the Perron-Frobenius theorem, all the eigenvalues λ of C
are such that |λ| < 1. Therefore it can be shown that

lim
n→∞

Cn = 0N×N ,

Where 0N×N is the N × N zero matrix. Using this, the limit can now be evaluated in the
following way:

lim
n→∞

rn =
∞∑
k=0

Ckb + 0n×n = (I − C)−1b.

Observing that (I − C) has a non-zero determinant implies the existence of this solution
showing that

r∞ = (I − C)−1b.(2)

5. The Modification

In this section, we will examine modifying Colley’s iterative procedure by using the pure
win percentage

nwin,i

ntot,i
rather than the modified win percentage used by Colley,

1+nwin,i

2+ntot,i
. In

his paper, Colley states that using a pure win percentage would result in a singular matrix
causing insufficient conditions to find a solution to the ranking. Here we will propose a
solution to this problem.

This change in computation results in the need to redefine variables from the Colley Matrix
Method Background section. We will call the similar variable of C matrix C̃ and of b the
column vector b̃ such that

C̃i,j =
Gi,j

ntot,i

b̃j =
nw,i − nl,i

2
· 1

ntot,i

where ni,j is the number of times team i played team j. It follows from the same iterative
procedure that we get a new sequence

r̃1 = b̃ + C̃r0

r̃2 = b̃ + C̃r1 = b̃ + C̃b + C̃r0
...

r̃n =
n−1∑
k=0

C̃kb + C̃nr0.(3)

In trying to compute limn→∞ r̃n, there arise two problems:

• The matrix (I− C̃) is no longer non-singular, therefore
∑∞

k=0 C̃
k no longer converges.

• The eigenvalues λ of C̃ are no longer strictly less than one, therefore limn→∞ C̃
n does

not go to 0.
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Both of these complications come from the fact that the matrix C̃ now has an eigenvalue
λ = 1. This follows from the Perron-Frobenius Theorem since the matrix C̃ has all row sums
equal to 1. In fact, the Perron-Frobenius Theorem tells us that there are two possible cases.

• There exist eigenvalues λ1 = 1, λ2 = −1. However, this only occurs when the schedule
graph of games played is bipartite. Since this rarely happens in practice, we will not
consider this case here (despite the existence of a solution to this problem).
• There is one eigenvalue λ1 = 1 with all other eigenvalues |λi| < 1, i > 1. We will

assume this is the case for the rest of the paper.

6. The Solution

In the case in which there is one eigenvalue λ1 = 1 and the other eigenvalues are strictly
less than one, we note that the row sums of C̃ are now one and the entries C̃i,j ∈ [0, 1].

Therefore, the matrix C̃ can be thought of as a transition matrix for a stochastic process,
specifically a random walk on a graph.

It becomes further necessary to introduce one last vector in order to show the existence of
the solution for a non-singular matrix with an eigenvalue of λ1 = 1 with algebraic multiplicity
1. Let π be the unique stationary distribution of C̃ with eigenvalue of λ1 = 1 such that
πC̃ = π. Then because C̃ is the transtition matrix for a random walk on a graph, we know
that

π(j) =
ntot,j∑
i ntot,i

.

Recalling the ranking as defined in the iterative scheme, r̃n =
∑n−1

k=0 C̃
kb̃+ C̃nr̃0, then one

must show that this limit converges. First, since C̃ is the transition matrix for an aperiodic
random walk on a graph with stationary distribution π, then limn→∞ C̃

nr̃0 goes to a column
vector with all entries equal to π · r̃0 = 1

2
. That is

(4) lim
n→∞

C̃nr̃0 =
1

2
1N×1.

because the rows of a transition matrix of a finite Markov Process approaches the stationary
distribution as n→∞.

A little more complicated is the convergence of

lim
n→∞

n−1∑
k=0

C̃kb̃.

This sum does not obviously converge since the matrix C̃ has an eigenvalue of λ1 = 1. To
show this does converge, decompose RN = W1 ⊕W2 where

W1 = span{1N×1}
is the eigenspace for λ1 = 1 and

W2 = {v ∈ RN : π · v = 0}
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is an invariant subspace for the transformation T (v) = C̃v. W2 is an invariant subspace
under (C̃) because

π · (C̃v) = (πC̃) · v = π · v = 0, if v ∈ W2.

Moreover, we claim b̃ ∈ W2. This is easily seen because

π · b̃ =
N∑
k=1

ntot,k∑
i ntot,i

· nw,k − nl,k
2

· 1

ntot,k
=

1

2
∑

i ntot,i

N∑
k=1

(nw,k − nl,k) = 0.

From here we define T2 : W2 → W2 as the transformation T (v) = C̃v restricted on the
subspace W2. Then,

lim
n→∞

n−1∑
k=0

C̃kb̃ = lim
n→∞

n−1∑
k=0

T k2 b̃.

Moreover, T has eigenvalues λ1 = 1, |λi| < 1, for i > 1 from the construction above, so T2
has eigenvalues of strictly less than 1 and b̃ ∈ W2 as shown before. Therefore the limit must
exist.

7. Computing the Limit

Having proved the limit of (3) as n→∞ exists, it remains to show how to calculate this
limit in a simple and efficient manner similar to Colley’s solution given by (2). We claim
that the limit solution to the system using the pure win percentage

r̃∞ =
∞∑
k=0

C̃kb̃ +
1

2
1N×1

is equivalent to the solution from the set of equations

(5)

{
(I − C̃)r̃ = b̃

π · r̃ = 1
2

The rank of (I − C̃) = n− dim(Eλ1) = n− 1. Showing that π is linearly independent of
(I − C̃) will prove that there exists a unique r satisfying the second solution method. Since
(I− C̃) has row sums of 0, and the row sum of π is non-zero, then it is clear that the rank of[

(I − C̃)
π

]
is n by direct application of the definition of linear independence and that the rank of the
column space equals the rank of the row space.

Therefore, π is indeed row independent of (I − C̃) and there does exist a solution r̃ to the
second set of equations. Now one must show these are equivalent rankings r̃ which will be
done through substitution.
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(I − C̃) · r̃∞ = (I − C̃) ·

(
∞∑
k=0

C̃kb̃ +
1

2
1N×1

)

=

(
∞∑
k=0

C̃kb̃ +
1

2
1N×1

)
−

(
∞∑
k=0

C̃k+1b̃ + C̃
1

2
1N×1

)

=

(
∞∑
k=0

C̃kb̃−
∞∑
k=0

C̃k+1b̃

)
+

(
1

2
1N×1 −

1

2
1N×1

)
= b̃

and

π · r̃∞ = π ·

(
∞∑
k=0

C̃kb̃+
1

2
1N×1

)
=
∞∑
k=0

πb̃ + π
1

2
1N×1

= 0 +
n∑
j=0

ntot,j
2
∑

i ntot,i

=

∑n
j=0 ntot,j

2
∑

i ntot,i

=
1

2
.

Therefore, r̃∞ is in fact the unique solution to the system (5).

8. B1G Basketball 2015-16 Season

To illustrate that both ranking methodologies yield a similar solution, we will use the B1G
Basketball (pre-tournament) inter-conference play for the 2015 to 2016 season. The reason
that non-conference play will be excluded is to maintain the small size of teams necessary
to complete the ranking.

A side-by-side comparison of the rank value r, the rank, and the conference ranking is
shown in the table below.
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University Colley r Rank Modified Colley r̃ Rank Conference Rank

Indiana 0.7686 1 0.7950 1 1
Michigan State 0.6873 2 0.7068 2 2

Iowa 0.6706 3 0.6919 3 5
Wisconsin 0.6704 4 0.6916 4 6

Purdue 0.6621 5 0.6819 5 3
Maryland 0.6619 6 0.6813 6 4
Ohio State 0.5801 7 0.5866 7 7
Michigan 0.5504 8 0.5564 8 8

Northwestern 0.4361 9 0.4274 9 9
Penn State 0.4141 10 0.4062 10 10
Nebraska 0.3514 11 0.3349 11 11
Illinois 0.2985 12 0.2757 12 12

Minnesota 0.1501 13 0.1109 13 13
Rutgers 0.0984 14 0.0534 14 14

It is clear from the table that the values of r differ slightly between the methods, yet they
both preserve the average ranking of 1/2.

The Big Ten determines the Conference Rank strictly based on inter-conference play and
the win percentage. The differences between the Colley rank, Modified Colley rank, and the
Conference rank come from the tie-breaking rules used by the Big Ten when teams have
the same in-conference win percentage, which in this case was a four way tie between Iowa,
Maryland, Purdue, and Wisconsin.

9. Conclusion

When computing the ranking of head-to-head competition, ultimately one can maintain
the same principles of the Colley Matrix Method of no bias or ad hoc adjustments while using
an unmodified win percentage. This simple solution is the one that satisfies the system (5).
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