Refereed Publications

[1]  Jonathon Peterson and Ofer Zeitouni. Quenched limits for transient, zero speed one-dimensional random walk in random environment. Ann. Probab., 37(1):143-188, 2009. [ bib | DOI | arXiv | http ]
[2]  Jonathon Peterson. Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat., 45(3):685-709, 2009. [ bib | DOI | arXiv | http ]
[3]  Jonathon Peterson and Ofer Zeitouni. On the annealed large deviation rate function for a multi-dimensional random walk in random environment. ALEA Lat. Am. J. Probab. Math. Stat., 6:349-368, 2009. [ bib | arXiv | .pdf ]
[4]  Jonathon Peterson. Systems of one-dimensional random walks in a common random environment. Electron. J. Probab., 15:no. 32, 1024-1040, 2010. [ bib | DOI | arXiv | http ]
[5]  Jonathon Peterson and Timo Seppäläinen. Current fluctuations of a system of one-dimensional random walks in random environment. Ann. Probab., 38(6):2258-2294, 2010. [ bib | DOI | arXiv | http ]
[6]  Jonathon Peterson. The contact process on the complete graph with random vertex-dependent infection rates. Stochastic Process. Appl., 121(3):609-629, 2011. [ bib | DOI | arXiv | http ]
[7]  Nina Gantert and Jonathon Peterson. Maximal displacement for bridges of random walks in a random environment. Ann. Inst. Henri Poincaré Probab. Stat., 47(3):663-678, 2011. [ bib | DOI | arXiv | http ]
[8]  Jonathon Peterson and Gennady Samorodnitsky. Weak weak quenched limits for the path-valued processes of hitting times and positions of a transient, one-dimensional random walk in a random environment. ALEA Lat. Am. J. Probab. Math. Stat., 9(2):531-569, 2012. [ bib | arXiv | .pdf ]
[9]  Jonathon Peterson. Large deviations and slowdown asymptotics for one-dimensional excited random walks. Electron. J. Probab., 17(48):1-24, 2012. [ bib | DOI | arXiv | http ]
[10]  Jonathon Peterson. Strict monotonicity properties in one-dimensional excited random walks. Markov Process. Related Fields, 19(4):721-734, 2013. [ bib | arXiv ]
[11]  Jonathon Peterson. A Probabilistic Proof of a Binomial Identity. Amer. Math. Monthly, 120(6):558-562, 2013. [ bib | DOI | arXiv | http ]
[12]  Jonathon Peterson and Gennady Samorodnitsky. Weak quenched limiting distributions for transient one-dimensional random walk in a random environment. Ann. Inst. Henri Poincaré Probab. Stat., 49(3):722-752, 2013. [ bib | DOI | arXiv | http ]
[13]  Jonathon Peterson. Large deviations for random walks in a random environment on a strip. ALEA Lat. Am. J. Probab. Math. Stat., 11(1):1-41, 2014. [ bib | arXiv | .pdf ]
[14]  Jonathon Peterson. Strong transience of one-dimensional random walk in a random environment. Electron. Commun. Probab., 20:no. 67, 1-10, 2015. [ bib | DOI | arXiv | http ]
[15]  Jonathon Peterson. Extreme slowdowns for one-dimensional excited random walks. Stochastic Process. Appl., 125(2):458-481, 2015. [ bib | DOI | arXiv | http ]
[16]  Sung Won Ahn and Jonathon Peterson. Oscillations of quenched slowdown asymptotics for ballistic one-dimensional random walk in a random environment. Electron. J. Probab., 21:1-27, 2016. [ bib | DOI | arXiv | http ]
[17]  Elena Kosygina and Jonathon Peterson. Functional limit laws for recurrent excited random walks with periodic cookie stacks. Electron. J. Probab., 21:1-24, 2016. [ bib | DOI | arXiv | http ]
[18]  Elena Kosygina and Jonathon Peterson. Excited random walks with Markovian cookie stacks. Ann. Inst. H. Poincaré Probab. Statist., 53(3):1458-1497, 2017. [ bib | DOI | arXiv | http ]
[19]  Milton Jara and Jonathon Peterson. Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment. Ann. Inst. Henri Poincaré Probab. Stat., 53(4):1747--1792, 2017. [ bib | arXiv | http ]
[20]  Burgess Davis and Jonathon Peterson. Excited random walks with non-nearest neighbor steps. J. Theoret. Probab., 30(4):1255--1284, 2017. [ bib | arXiv | http ]
[21]  Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson, Jacob Smith, and Kevin M. Stangl. Upper and lower bounds on the speed of a one-dimensional excited random walk. Involve, 12(1):97--115, 2019. [ bib | DOI | arXiv | http ]

In Press

[22]  Sung Won Ahn and Jonathon Peterson. Quenched central limit theorem rates of convergence for one-dimensional random walks in random environments, April 2017. To appear in Bernoulli. [ bib | arXiv | http ]
[23]  Xiaoqin Guo and Jonathon Peterson. Berry-Esseen estimates for regenerative processes, August 2017. To apear in Stochastic Process. Appl.bib | arXiv | http ]

This file was generated by bibtex2html 1.97.