NUMERICAL ANALYSIS AND SIMULATION FOR A
GENERALIZED PLANAR GINZBURG-LANDAU EQUATION IN A
CIRCULAR GEOMETRY
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Abstract. In this paper, a numerical scheme for a generalized planar Ginzburg-Landau energy
in a circular geometry is studied. A spectral-Galerkin method is utilized, and a stability analysis
and an error estimate for the scheme are presented. It is shown that the scheme is unconditionally
stable. We present numerical simulation results that have been obtained by using the scheme with
various sets of boundary data, including those the form w(0) =exp(idf), where the integer d denotes
the topological degree of the solution. These numerical results are in good agreement with the
experimental and analytical results. Results include the computation of bifurcations from pure bend
or splay patterns to spiral patterns for d=1, energy decay curves for d=1, spectral accuracy plots
for d=2 and computations of metastable or unstable higher-energy solutions as well as the lowest
energy ground state solutions for values of d ranging from two to five.
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1. Introduction
This paper considers a numerical scheme for solving a generalized planar
Ginzburg-Landau equation over the unit disk in R?:

wy— k1 (V(V-u)) + ko (V % (V x 1)) = éu(l— ),  (2,t)€Bi(0) x (0,T]

ulpn =g (1.1)

u|t=0:u0.

In (1.1), By:=B1(0) denotes the open ball of unit radius about the origin in R?
and u:B; —R%. When convenient, for ease of notation, we view u as a complex-
valued function such that u=u!(x1,22)+iu(r1,72) takes values in C for = (x1,22)
in B;. We consider boundary data g(x) that lie on the unit circle S!, that is, g(z)
has |g(xz)|=1. The boundary data then has an associated integer degree d=deg(g)
defined by the number of revolutions made by the vector g(e‘?) as @ varies from 0
to 2. We mainly study the case d >0, but do conduct simulations in the case d <0
If k1 =ko, then we obtain —k1(V(V-u))+ka(V x (V xu))=—kAu. This turns (1.1)
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into
1 10f
ut—kAuze—zu(l—MQ)::?%, (x,t) € B1(0) x (0,T]
_ (1.2)
ulogn=g
ult=0 = o

over the unit disk. This is a vector version of the well-known Allen-Cahn equation,
introduced by Allen and Cahn to discuss the motion of anti-phase boundaries by way
of diffusion in solids that are crystalline in nature [1, 2]. The free energy per unit
volume of the homogeneous phase, f, is the Ginzburg-Landau bulk term, which is used
to describe the occurrence of phase transitions in superconductors and superfluids [4].
Due to the applications of the Allen-Cahn equation, the development of precise and
efficient numerical schemes to solve this equation is essential. Numerical schemes for
the case kj =ko that utilize spectral methods to find steady state solutions to (1.2)
have been analyzed previously [15, 16]. Hence, we will assume kj # ko.

Dynamical properties of vortices in R? and their interaction in (1.2) have been
studied previously [3]. By discretizing the partial differential equation in (1.2), effi-
cient and accurate numerical schemes were proposed on both circular and rectangular
domains to obtain simulated interactions of the vortices in their domains and numeri-
cally different patterns of the steady states for vortex lattices (three or more vortices).
Our focus here is centered on obtaining steady-state solutions to (1.1) over the unit
disk and their vector field orientation near the vortex center.

We define k =max(ki1,ks) and k =min(k1,ks). The steady-state solution u.(x,t) =
ue(x), where dyue =0, is a minimizer of the energy functional

Je(u):= %/B y(V-u)? + ko (V xu)? + 2—12(1 — |u|?)*dz. (1.3)

Since V x (V xu) —V(V-u)=—Au, depending on whether k1 < ko or ko <k; we can
express the equation in (1.1) as

— 1 1
ut—kAu—&—fkl,kQu:E—Qu(l—|u|2) ::6—2]‘(u)7 (1.4)

where

(k)g—kl)v X (V XU) when E:]ﬁ

(ko —k1)V(V-u) when k=ko. (1.5)

fkh;wu: {

A weak formulation of (1.4) is to find u€ H*(B;(0

=

) such that

(ug,0) +k(Vu, Vo) + (L, kou,v) = = (f(u),0) (1.6)

a
[\D‘H

for every ve H}(B1(0)), with

(k‘g—k’l)/ (Vxu)(Vxv)dr when k=Fk;

(gkhkzuvv): .

(kl—kg)/ (V-u)(V-v)dx when k = ky.
B,
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1.1. Principal Results

We develop a spectral-Galerkin numerical method for solutions to Eq. (1.1) in
order to help interpret the experimental observations and analytical results described
in Subsection 1.2. It is also useful to obtain insight on results not currently proven
and to explore the nature of the defects computationally. Our methodology involves
first discretizing the Euler-Lagrange equations via a first order semi-implicit stabilized
scheme. The discretized equations are converted into a polar geometry representation,
approximating the solution with a Fourier expansion in the angular variable using an
FFT and approximating the Fourier coefficients using Chebyshev polynomials. This
scheme is shown to be unconditionally stable with error estimates on the order of
exp(T/€?).

We tested the scheme with varying boundary conditions of the form g =exp(id0)
for integer values of d. When ki <ko and d >0, the vector field is asymptotically
radial near the singularities, whereas when ko < k1, the vector field is asymptotically
tangential. In the case d=1, the singularity is at the origin and the solution is radially
symmetric. We find a critical value €. =¢€.(k1,k2) for which the numerical solutions
bifurcate from purely radial or tangential solutions to spiral solutions. For example, in
the case k1 < ko and g=exp(i(6 —7/2)), if € > €., the lowest energy solution is purely
tangential. For € <e., a spiral solution, tangential at the boundary but radial at the
origin, bifurcates from the purely tangential solution, having lower energy. When
d=2, there are two +1 degree singularities, which seem to have a unique location,
giving rise to a unique minimizer in both cases ki <k and ks <k;. When d=3,
the global minimizers have three +1 degree singularities with unique locations up
to a 7/2 rotation. Depending on the initial condition wug, additional higher-energy
solutions may also be found that appear to be (locally) stable. For example, we find
a vector field with four +1 degree vortices and one —1 degree vortex for boundary
conditions with d=3. We have performed a number of numerical computations for
both the lowest and higher energy solutions with a variety of boundary conditions
of various degree d, with several possible locations of the defects that depend on the
values of k1 and ks.

1.2. Applications

Equation (1.3) has been used to study thin film chiral smectic C (SmC*) lig-
uid crystals. Smectic C (SmC) liquid crystals are molecular layers such that each
molecule’s long axis is tilted at a constant angle 0< 6y <m/2 relative to the layer
normal. Thus, SmC are both positionally ordered and orientationally ordered. The
vector parallel to the local average of the molecular long axes at a point in the layer
x is the director field for the liquid crystal, denoted as n(z). Thin films are usually
just several layers thick and the Oseen-Frank energy [7] gives the elastic energy for
the molecular orientation of the liquid crystal. In this context, the vector field u in
(1.1) and (1.3) is the projection of n(z) onto the layer’s plane, called the c-director
field. Each layer can be represented as a two-dimensional liquid [12] and the integral
is taken over the film,

1
5/ ko (div u)? + ky(curl u)?dx. (1.8)
Q

SmC* liquid crystals have the additional property of the molecules twisting perpen-
dicularly to the director. This forms a spontaneous polarization field that produces
elastic and electro-static contributions to the energy, which is modeled by introducing
boundary values for u on Q [9] and increasing the bend constant k; above its bare
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elastic value [10]. In the second instance, this motivates studying the case k1 # ko in
which ki1 =k, is the splay constant and k; =k, is the bend constant.

If a particle is introduced in the thin film SmC*, then a singularity in the spon-
taneous polarization field will occur. This will cause an island to nucleate around
the defect, with an island width that is several times the film thickness. Various ex-
periments have been conducted and models derived to investigate this phenomenon
[9, 10, 11, 12]. The islands in these experiments are disk-like and on the island’s outer
edge, the c-director is tangential counterclockwise (e’w*”/ 2)), resulting in the degree
of the vector field being +1. Ref. [9] represents the island-defect scenario by setting
Q= DBg(0)\ Bs(0) in (1.8), where Bs(0) represents the defect. Lee et al. [9] investigate
the stability of equilibria both experimentally and numerically over S!'-valued fields
with ks > k. The initial orientation of the director field is tangential. As the island
increases in size, or through the effects of external forces (such as blowing on the film
with a small jet of gas), the pure bend texture can transform. The vector field at the
outer edge remained tangential counterclockwise, while the vector field at the core
particle would either change to approximately radial, or remain unchanged. Their
simulations for the case k1 < ko were similar to these experimental results. We intend
to show that the stable solutions to (1.1) have similar properties and produce fields
that follow the same pattern as observed in these experiments for small e.

Although we mainly describe results for boundary conditions having positive de-
grees d >0, there is also interest in studying the problem with d <0. For example in
Ref. [17], Silvestre et al. studied the texture in the background film of free standing
SmC'x containing d disjoint circular islands. The results from their simulations and
experiments show a topological defect of degree —1 is associated with each island.
We have therefore included some computations for kj # ko with boundary data hav-
ing negative degree. We note that if k3 =ky then a solution with negative degree
d <0 simply corresponds to the complex conjugate of an equal-energy solution with
positive degree —d. For ki # ko this is no longer true, as we illustrate with examples
for d=—1 and d=-2.

Ref. [5] studies the minimization of (1.3) over a multiply-connected domain, with
a fixed S!-valued Dirichlet boundary condition and k; # ke. A subsequence u,, con-
verges to an S! valued vector field with the same number of degree 1 singularities as
the degree of the boundary condition d. At each singularity a € R2, u* behaves locally
as

_ (1.9)

where a, =+1 when k=k; and a, = i when k= ko (regarding u, x, and a as complex
variables). The location of these singularities also minimize a renormalized energy
related to (1.1) (see [5]). The study in [5] examines the case where Q is multiply
connected. Here we focus on the special case that 2 is simply connected. Singularities
form in w* and the local property (1.9) holds as in the general case; however the
structure of the renormalized energy and the overall pattern in u* are simpler. The
purpose of this paper is to validate computationally the aforementioned results from
[5] in the simply connected domain Bj.

Our paper is organized as follows. In Section 2, we introduce the time discretiza-
tion of (1.4) and show that the energy is stable unconditionally. In Section 3, we
describe the spectral-Galerkin method used to determine numerical solutions to (1.1)
in the unit disk. In Section 4, we establish an error estimate for the discretized
scheme utilizing the spectral-Galerkin method. Since the domain of interest is a disk,
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we modify pre-existing error estimates from [16] and incorporate estimates in a circu-
lar geometry. We present some numerical results from simulations that we conducted
in Section 5, while comparing results found by experiments conducted with SmC* in
the literature [9, 10, 11, 12]. We conclude the paper with some remarks in Section 6.

2. Time Discretization and Stability Results

In this section, we analyze a scheme that will be used to numerically find equilib-
rium solutions to (1.1). Let u™ be the solution at time step ¢,,, with u™ =g on 9B,
and let dt=t,,1—1t,. We consider the following first-order semi-implicit stabilized
scheme for (1.4):

un Tl 1

T S
_k;Aun—H +$k17k2un+€72(un+l_un)zgun(1_|un|2)’ (21)

_un

ot

where the stabilizing term ¢ 25 (u" ! —u™) introduces an extra consistency error [16]
that is of order S&t/€?, which is of the same order as replacing the implicit treatment
of nonlinear term by the explicit treatment. Note that the above scheme is straight-
forward to implement, since at each time step, only a Poisson type equation needs to
be solved.
For notational purposes, we will denote F(u)=(1—|u|?)?/4 and f(u)=F,(u).

We also say that a function v in is “well-prepared” if:

1. v(z)=g(x) on 9 with degree of g equal d >0,

2. Jv(z)| < My, |Dv(z)| < Ma/e,|D?v(z)| < M3/e? on Q and

3. Je(v(z)) <kndln(e™1)+ My
for constants M; >0 for all 1 <i<4. If we assume that uy in (1.1) is "well-prepared”
we can get a uniform bound on solutions to (1.1), |u(z,t)| < M for every z,t >0 and
0 <e<1. This can be shown by first using the gradient flow to obtain

1
—2/ (1= |ue(x,t)[*)? de < My
€ B

for all t>0. The uniform bound follows from this, [5], and parabolic estimates [13].
From [16], we can use a modified F', denoted as F, that has quadratic growth outside
of the interval [—M,M;] without affecting the solution in the numerical scheme.
This truncation applies if the boundary data’s degree, d, is nonnegative and ug has d
degree one, well-separated vortices. This does not include solutions that have negative
degree vortices such as cases found in Section 5. We must note that it is still a major
open problem to show that solution of the discrete problem 4™ *! will remain bounded
provided that ug is bounded. Since the main focus of the paper is finding steady-state,
minimal energy solutions, for simplicity we will assume that

max| ' (u)] < L

for some positive constant L. Then we have the following convergence property for
this scheme.

THEOREM 2.1. For S > g, the scheme (2.1) is energy stable, i.e. the following discrete
energy law holds

Je(un+1) < Je<un)

for all n>0.
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Proof. This proof is similar to the proof of Lemma 2.2 in [16], but special care is
needed to deal with the term %, p,u".

Taking the inner product of (2.1) with (u"*!—u")/6t (noting that [(u"+!—
u™)/ot]|op, =0), we obtain, with integration by parts,

e+ 856t untt —qyn k 1

€2 | 5t ||2+§(Vun+l7v(un+l_un))_,'_ﬁ(gkhkzun’un—&-l_un)

(2.2)
+L(f(u”) "t —u™)=0
dte? ’ ’
where (%%, k,u,v) is defined in (1.7). Using the identities
2(a,a—0b)=|a—b|*+|a|>—|b|?
(@.a-b)=la— b+ ol o s

2(b,a—b)=~la—b* +a|* — [b]?,

we can obtain the following equalities

A k n n n n
FVur LV (@ =) = S (Va2 = Va2 4 [V (@ = um))?)

ko —k
(k2= k) (V™ ¥ x (u™ ) = 2o (9 xam P = [V a2 = [V (7 =) %)
ky—ko n n n n
BB (g 2 9 2 9t ).
(2.4)
For the term (f(u™),u™*! —u™), we use a Taylor series approximation in several
variables:

(k1 —ko)(V-u™, V- (u" T —u™)) =

P = () = f() (0 =)+ 5 (=) 1y () =) (25)

If ko < k1, substituting (2.4) and (2.5) into (2.2) gives

1
(Vu”+17V(u"+1 _un)) + E(gkhkzun7un+1 _un)

62+S(5t”un+1—u"”2 k.
€2 ot 20t
- n n+l_ ,n

g (F) ™ )

B 62+S(5t||u"+1—u” 1
e ot 26t

1 n n n
a5z (k2 = E)[IV X u™ 12 = (kg = k) [V x ™ 7 4 (b1 = ko) [V (u™ = ™))
1

unJrl o u” = un+17un T " n un+17un .
+/BI(O)<F< )~ Fu")d /Bl@( T F () )d

1+ o (R Va2 = Bl Vu |2 4+ K]V (" ™))

+

2¢2
Utilizing the Frobenius matrix norm gives the equality
|Vul? = (V-u)? + (V x u)? +2det(Vu). (2.6)

The function det(Vu) is a null Lagrangian. Therefore, for all functions u such that
u|lgp, =g, we have

det(Vu)dz=C(g), (2.7)
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with [ det(V(u"*! —u"))dz=0. Using (2.6), (2.7) and the definition of Jc(-) in
(1.3), the equality becomes

ki—k

S n+1 ni2 n+1 kl n+1 ny\|12
o P ) = () SV ) 7+

<maxu‘fu|” n+l __ n||2

n+l__ , nj|2
— 2e25t I

< gagl

Similarly, when k; < ks, we obtain

S n n 1 n k? n n k2 n
e P ) L) 2 )P g
maxu\fu|” n+l n||2 HunJrliuan

— 226t = 2e26t

Since the terms involving u™*t! —u™ are positive, we obtain
S - = L
L A e A E M

The scheme is stable when J,(u"*1) < J.(u™). This will occur if

L
92¢2 =

m\m =

<

implying the desired result. O

3. Spatial Discretization

In this section, we develop a spectral-Galerkin scheme to solve (2.1). By using
polar coordinates, we can map B to a rectangular domain, which is the most effective
way to deal with this type of geometry [14]. We will derive a computational algorithm
using the methods outlined in [14]. We first assume g =0 then show that the non-zero
boundary condition can be reduced to this case.

3.1. Converting the operator to Polar Geometry
We multiply (2.1) by €26t to obtain the equation

3

(€2 + S0t)u™t — 25tk Au = 6tu" (1 — [u™|*) + (€2 + SSt)u" + 20t (k1 — k) Liey g u"™

(3.1)
where we assume «” =0 on B;(0) for each n. In its variational form, we want to find
u"tt € H}(By) at each time step such that

(62+S5t)/ u"+1ovda:+e251%/ Z V(u')" - Vo'lde
B Bii—1,2
u”.vd:v+e26t(k1—k2)/ ($k11k2un)~’l)d$

:5t/B (u"~v)(1—|u”|2)dx+(62+56t)/B ;
' ' (3.2)

1

holds for all ve Hi(By).
We apply the polar transformation z=rcos(f) and y=rsin(d) to (3.1). The
Laplace operator becomes

1 1
Au= ;&(r@ru) + ﬁageu (3.3)

2V (-

u™)||?

u™)|?
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while %, r, becomes, with some direct calculations,

1 T Opell . Ovll DT,
fkthu: 5[6”.ﬂ— 0, + % —i—QZM — 22%#]61(20)
11 r ) r r (3.4)
— 5(;&(7‘&&) + ﬁaggu)
if k=Fk; and
L k=510 - Ot | Doott | o; 9o _ 2iaif]ei<29>
11 ) " " (3.5)
+ 5 (;8T(T8Tu) + 7728991&)
it F=ky. Let
f(r,0) = otu™(r,0) (1 — [u™ (1,0)|%) + (2 + S6t)u" (r,0) + €25t (k1 — ko)L, iy u™ (1,0).
(3.6)
Then (3.1) becomes
-1 1
(€ +Sot)umtt — 62&1@(;@ (ropu" ) + ﬁaegunﬂ) =f" (3.7)

for (r,0) €(0,1) x [0,27), with «™(1,6) =0 for 6 € [0,27) and u™ periodic in 6 for all n,
keeping in mind the dependency of kq,ks for f™. This also entails that (3.2) becomes

_ — 1
(62+S(5t)/ u"tvrdrdd + €25tk Opu" - B vrdrdd + €25tk Z0pu - dyvdrdd
B B1 BT

= fTurdrds.
B
(3.8)
The polar transformation introduces an artificial singularity at » =0, hence addi-
tional pole conditions must be imposed to obtain the desired regularity [14]. This is
done in the following manner. For the Fourier expansion

oo

uaey)=ut(r0)= Y up(r)e™

m=—0oo

to be infinitely differentiable in Cartesian coordinates the essential pole conditions
must be satisfied [14], i.e.,

up (0)=0 for m#£0. (3.9)

We will now describe the spectral approximations that will be utilized. We choose

an even cutoff number M >0, approximating the solution by u™ ~ Z_M/ 2y (r)e'md

m|=0 ""m
and the right hand side of (3.7) by f"(r,0) %le\i/‘io fr(r)e™®. We then solve the
system

1 2
(€2 + Sotyupt! = 6th(~0, (r,ulyt) - %ufjl) = (r) (3.10)
for each m, with ]}, (0)=0 for all n and m#0 and u,(1)=0 for all n and m. For
notational purposes, we will drop the indices n,m, keeping in mind that f is dependent
on the solution from the previous time step.
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Now we calculate a weighted variational formulation for the Chebyshev interpo-
lation in the radial coordinate. As in [14], we use the transformation r=(s+1)/2 in
(3.10). Utilizing the change of variables, (3.10) becomes, letting w(s)=u((s+1)/2)

and g(s)=f((s+1)/2),

426tk 4e2m?25tk
_— D' + —M—
PSR Ay pory

and the weighted variational problem becomes to find w € X (m) (refer to (4.1) for the
definition) such that, multiplying both sides by (s+1)/4,

(€4 S6t)w — w=g (3.11)

2
‘ ZS& ((s4+1)w,v), +e25tk((s+ 1w, (vw)") +€2m25t%(s$1

Wu=1((s+ g0,
(3.12)

where (f,9), = f_ll fgwds. We approximate w,g with Chebyshev polynomials in
XN (m),

N N
w(s)=Y wpTp(s), g(s)=_ gpTp(s).
p=0 p=0

3.2. Approximating the curl curl and grad div operators

Recall that g is the m-th spectral function to dtu™(1—|u™|?)+ (2 + S5t)u™+
€26t(ky —k2)L, kou™. The first two terms can be calculated in a straightforward
manner. The last term, however, requires some work. In polar coordinates, using the
approximation u=>7" _ uy(r)e’™’, (3.4), and (3.5), we have

oo 1 _ 2m—1_ _ m(m_z)i (2— )8
D= 32 300+ 24 2O
|m[=0
m o
_ Z 5(6r'rum+;ar’um—’r72um)ezm
|m|=0
if k=Fk; and
— 1 2m—1 m(m—2 P
Lrraatlr )= Y 20+ 220,17, T D e
|m|=0
(3.14)

1 1 m? im0
+ Z §(arrum+;arum_ri2um)ezm

|m|=0

if k=ko, for a function u that is periodic in #. From the above calculations, we find
that the m-th spectral function to %, x,u is

1 3—2m m(m —2 1 m?
Em (T) = i(aTTEQ—m + 78Tﬂ2—m + ¥ﬂ2—m - (8r1“um + 7arum - Tum))
r T r r
(3.15)
if k=ky and
3—2m m(m—2) 2

aTﬂ27rn

_ 1 m
+ T'L@fm + (arrum + ;arum - TTum))
(3.16)

1
U, (T‘) = i(arrﬂ2fm +
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if k=ko. Then, as before, by changing variables and multiplying by (s+1), we will
be left with the term

u(s)

a(m) (s+1)’

where a(m) is a constant that depends on m. This can be calculated by plugging
in values for s# —1. However, since we are assuming the functions u are smooth,
so are the functions w,, and in turn v(s). Then we find, by using the fact that
Um (0)=v(—1)=0 for m#0,

w(s)
slilr_ll(sﬂ)*”( D

Using a representation by Chebyshev polynomials, we get

N N-1
v(s) =Y 0 T(s) = (s+1) 3 0,7(s)
p=0 p=0

so that
v N-1
P ~ 0,T'(s)
p=0
Therefore we obtain
N-1
u(s) il
Sl_l)rr_l1 D) 0T (—1)~=v'(—1)
p=0

Since the derivative at —1 can be approximated by a Chebyshev interpolation, we can
replace the term a(m) (;’Sfl)) at s=—1 with a(m)v’(—1). In this manner, (3.6) can be
calculated directly.

3.3. Nonzero boundary condition

The initial problem involves a boundary condition u|gp, =g, where g is a smooth
function with |g|=1. We can employ the harmonic extension, g, in the following
manner. We represent g by the Fourier expansion gzzmlzlgmeime, and define

g= Ziﬁlzlgmr"”'eime. Then §(1,0) = glop, =g and applying the Laplace operator to
g gives Ag=0. Define the function 4 =u—g, giving i|sp, =0. Substituting @ into
(1.4), using the definition of %%, ,, gives

on —EA'[L-l-gklkaﬂ

= U —EAU—I—gkl,kQu—gkthg

1 .
= 6721‘(17 |u‘2) 7$k1,k2g'

From the above calculations, @ satisfies the system

= 1 I -
iy = kAT (k1 = ko) Ly by U= =5 (A4 §) (1= [+ 1) = (b1 = k2) Lo 12§

iilon =0 (3.17)

ﬂltzo :’&0 =Ug —g.
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Hence, using the methodology described in the previous subsections of Section 3, we
can find @ at each time step, and then add g to @ to obtain u.

REMARK 3.1. If the simulation domain is rectangular, one can discretize using a
Chebyshev spectral method. We would then construct multi-dimensional basis func-
tions using the tensor product of one-dimensional basis functions [15]. This leads to
direct calculations of the terms V-u and V xu in the weak formulation. The only
non-linear term is the Ginzburg-Landau term, u(1— |u|?), which can be treated as
before, using the previous time step as input values.

4. Error Analysis
In this section, we derive error estimates for the full discretization scheme de-
scribed in the previous section.

4.1. Preliminary approximation results

For clarity, we establish first some notations and approximation results on some
projection operators.

Consider the Laplace operator, Au. Applying the polar transformation z=
rcos(f) and y=rsin(f) gives the expression (3.3). We will still denote u:=wu(r,6)
as the transformed function in polar coordinates. Using a Fourier expansion, we have

o0

U= Z um(r)em97

|m|=0
giving us
—Au:Z(—la (roru )—i—m—Zu )etm?
| ‘ r T ™%m ’]"2 m M
m

Define the weight function w®? ()= (1—1)%(1+t)®, where t € (—1,1) and the transfor-
mation r=(1+t)/2. Then we have for each equation m,

4 4m?
- 1 ="
1+t6t((t+ )at’l}>+(1+t)21},

where v(t):=v,(t) =um((t+1)/2) and we dropped the indices for notational pur-
poses. Letting I =(—1,1), we define the space

o _{H&(I) for m#0

" e H ():0(1) =0} for m=0 (4.1)

and define the approximation space Xy(m)=X(m)N Py, with Py being the space
of polynomials of degree less than or equal to IV. Define the bilinear form
A (1, 0) := (1, 0") o1 +m% (u,v) 0, -1

1 1
:/ u’U(1+t)dt+m2/ ut(14+t) "t dt
-1

-1

(4.2)

for u,v € X (m). We denote the orthogonal projection 73" : X (m) — X (m) and de-
fine it as

A (TN U — 1,y ) =0 (4.3)
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for every wy € Xy(m). We next define the anisotropic Jacobi-weighted Sobolev
space B, _ (I)={u:0fuel?, ,,.(I),0<k<s}, with the inner product, norm,
and seminorm as

(u,v)Bs —Z Ok u, 0F v) o1k (4.4a)
k=0
HUHQBL.’A:(U,u)BiLfl (4.4b)

lulgs, _, =107 ullys-1.-1, (4.4c)

and L2, ., ,(I) is the weighted L? space over the interval I. From [15], for any
’U,EX(m) ﬂBS_L_l,

am(w}\}mu—u,ﬂ}\}mu—u) = ||8t(7rN u—u)||2o. +m2||7r]1\}mu—u\|f,o,71

(N —s+1)! et (4.5)
T(NJFS)I 105 ul|Z

ws—1,s—1,

<c(1+m?N~?)

where c is independent of m, N, and u. Define the approximation space

M M M
Viyn={w= Y wun(r)e™ =" wyn((t+1)/2)e™ = > v n(#)e™ v n € Xy (m)}
|m|=0 |m|=0 |m|=0

and the operator IT}; y onto Yj x such that

M M
I}, yu= TN U (t41)/2)e™ = TN g (1) €™ (4.6)
|m|=0 Im|=0

for periodic functions u(r,d) in 6. As in [15], we define the space H;vS/(Bl (0)), with
s,8'>1, to be the space of periodic functions with partial derivatives up to order
(s’ —1) with the norm

lullZ.. = > (=)D 200,
|m|>0

+ Z m?( Y (||r1/28,'um||2 +m? ||7‘71/2um||2 + HTl/QUMHQ)'
|m|>0

(4.7)

Then for any ue€ H (B (0))0H]§7S/(B1 (0)), we have, by the orthogonality of the ex-

ponential functions {e"™?},

=yl = | ( )|v<u—H}w,Nu>|2+|u—ni4,Nu|2dx
1(0

2
m
<A4r g /r|5‘ m)|2+7|um TN U |27ty — 70N |
|m[=0

+4m Z /r|8 U | +—\um|2+r|um|2dr

|m|>M



Colbert-Kelly, McFadden, Phillips, Shen 13

Using the definition of ||| .., (4.5) and the fact that 72 (U — 7 ) || <

1 1 . .. .
Ctpy (U — TN U, Uy, — TN Uy ), We Obtain the projection estimate

(N—s+1)!

Iy = ullmy <6((14+MN )=

(V4+5) 20 =)
(4.8)

4.2. Error estimates
We consider the spectral-Galerkin method for the stabilized scheme: given u}, n =
H}w, NU0, Where ug is the initial condition, for £>0, find uﬁ/ﬁv €Yy v such that

1 S _
(&+?)(Uﬁz}v*URJ,N,”UM,N)+k(VU§Z}V,VvM7N)+($,€1’k2u’j\/]’N7UM,N)
(4.9)
1
= ?(f(uRI,N),vM,N) V'UM,N 6YM,N~

Here, 6t =tF+1 —tk and S is the stabilizing coefficient. We denote

Enfy =My yu(t™) —ujf & (4.10a)
By =u(t*h) =Ty vu(t+) (4.10D)
EYf N =ut™) —ulf N =EX N+ BN A (4.10c)

k+1y_ . ik
We also denote RFF!:= w —uy (tF+1). Using Taylor expansion with integral

residuals and the Cauchy-Schwarz inequality, we obtain [16]

tk+1

ot
IR [ ol (411)

for s=-1,0.

THEOREM 4.1. Let T>0. Assume that ueC(0,T;H}(B1)NHy* (B1)), w e
LZ(O,T;Hé(Bl)ﬂH;vS/(Bl)), and uy € L2(0,T;HY(By)). Then for S/2>L, with
s,8' >1, we have the following error estimate:

[u(t®) = ufy nllo < C(&,T) (K1 (u,€)t+ Ka(u,€)a(M,N)),
where

C(e,T) ~exp (622)

L ok
€

1
Ki(u,e) = ﬁ”uttHL%O,T;Hﬂ) +(=+ W)HutHLz(O,T;Hl)

5t 6t(k—k) 1 k—k
KQ(uae):HUOHH(%+(6+?JFT)”ut”Lz(O’T;H;S’)JF(EJFW)HUHC(QT;H;J')

(N—-s+1)!

~i (N+S)(178)/2+M1751.

a(M,N)=(1+MN™)
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Proof. Taking (4.9) and subtracting it from (1.6), with v=va, v € Y, v in (1.6),
we obtain

1 S - _ .
g)(Eﬁjle EE7N7IUM7N) + k(VEIIT/?:}VaVUJW,N) + ($k17k2 (u(thrl) 7UIX/I,N)7UM7N)

1 S . 4 S
= (R op )+ +H5t s )(ERrNn— Ez]flevaUM,N)Jrg(u(tkH)—u(tk)ﬂ)M,N)

1

+ 2 (flu(*th)) — f(uIJCVI,N)7'UM7N>-

Taking vy N = 25tE]’ij in the above, and using (2.3), we obtain

ots ~
(14 =) UM NG — 1 BRe v 15+ 1 BXE N — B [6) + 20tk VER N 1IG

+ 20 ( L oy (w(t* ) —ufiy ), NS )

M,N
~ Sét
<20t R B A 20+ =) 1By = B Nl B 3 o
20tS 20t
+ = ) —u(t) ol B3 w llo + 5 £ (u1) = £ (e ) ol B v llo-

_ (4.12)
When k =k, using (2.3) and by adding/subtracting some terms, we can obtain

25t($k1,k2 (u(tk-i_l)_ullcw N) Ek+1 )
=0t(k—R)[IV x Exf 515+ IV x Efy v1I5 = IV > (EY, & = Ede )]

+20t(k—k)[(V x B} N,V X EYF ) +(V x (u(t* ) —u(th)),V x Eff )
+H(Vx (B — Edn), VX By )]

(4.13)

A similar relation holds when k= ks, replacing Vx with V- in (4.13).

Plug in the above relation into (4.12): with the L?-norm squared terms on the
right hand side of (4.13) stays on the left hand side of (4.12), while the other terms will
go to the right hand side of (4.12). Then, using Cauchy-Schwarz inequality, Young’s

inequality, and [16], we can bound each term on the right hand side of (4.12) in the
following manner:

otk
26t || R || EX/ n <2 IIR'“HII2 1+ IVEV NS

Sot S22t 26t
21+ T B = BB Mo < (4 Z50) [ 10Ty wular+ 1B A B

20t 61252 ot
2 )l Mo B Ao < 2 [ e+ SBT3
20t k+1 e+ Lot LBk 2 Lot? [ 1 2
2 If(ult )) = f (g n)lloll B3 Mllo=55 ||E —Bunlbot5g [ 10—y y)uliodt
"
th+1

Lét? Lst
o [ TlBder oo (LBSHR+CIES A IR)
t
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T 2 20t(k—k otk
20t(k—E)|IV x E5 ol V x By llo < ¥HVE§Z}VIIO+—HVE’““ 2
T 202 (k—k)? [ Sth
25t(k—k)||V>< (u(tk-i-l) (tk>)|| ||VXE]I?/;FN||0 (k)/tk Hvut”()dt‘i‘iHVEkJrl HO
T n r 20t2(k — k)2 ¢h Stk
20t(k = k) [V x (B3 x = By w)llo|V < Eff yllo < % / VU ue e+ S IV ER RS,
o t

Again, similar relations hold for the last three inequalities in the case k= ko (replace
Vx with V-). Now, substituting the above and using the assumption S>L/2, we
obtain

Lot 3
(1+?)(||E]]€V;FNHO ”EMNH )+ 6t (k— k)(HVEﬁNHo HVEJ;@INH%)
952 [t Csot Lét
<Co=p [, Tuul)lRar+ S 1B N5+ 5z 13 K11
Codt? 262 (F— k2 t"“
(G ZEOERD) [ -1ty
€ E th ’
Cs0t2 2012(k—k)2. [
] A
€ k tk

Summing up the above inequality for all n=0,1,...,k(k < % +1) and using (4.11),
we get

~ 1 Cs 2(%-@)2
158 s — 181 s <02 (el o)+ 2D a2 )

C30t?>  20t%(k—k)?
(€ =5+ I =Ty )uel 20,7 m0)
L 2(k—k)?

+(?+7k I =Ty )l G0 )
k
L5t ) Codt I, -
Z IEY A NG+ 2 Z IEN N
n=0

By applying the discrete Gronwall lemma to the inequality, the triangle inequality
u(t®) =k § | <N EXr n I+ 1 Efr xl; the approximation result (4.8), and the assump-
tions on u, we obtain the desired results. O

5. Numerical Results

In this section we present some numerical results using the algorithm presented
above. All computations are performed in MATLAB!.

Simulations were conducted with boundary conditions having various degrees.
For each boundary condition, we ran simulations with k=%k; and k=k,. Except

LCertain commercial equipment, instruments, or software are identified in this paper to foster
understanding. Such identification does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the materials or equipment identified
are necessarily the best available for the purpose.
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Qrigntation of vector field u Origntation of vectar field u
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(a) Orientation of field for k=ki, with Je¢(u)=6.333.(b) Orientation of field for k=ka, with Je(u) =14.844.

Figure 5.1: The vector field of the solution with boundary data g=e® for e=0.1.

where otherwise noted, for each run we set §t=0.1, e=0.1, S=1.7, M =32, and
N =16, and run the simulation over the time interval 0 <t <7 =2000. The solutions
usually stabilize well before reaching the final time step. We let ki,ks € {0.5,1.5}, so
that if k=kq, then k1 =0.5 and ko =1.5; the roles of the constants are reversed when
k =ky. Multiple experiments, with varying boundary values, for both cases have been
conducted, and we present a few of the results for each scenario.

5.1. Degree One
We first consider the boundary conditions g = e*(®+t®) for various values of o. We
ran simulations for various initial conditions of the form

e (x—ap)

Ho= 0.1+ |z —ap|”

(5.1)

5.1.1. Radially Symmetric Solutions with ag=0

Figure 5.1 shows the minimizing vector field orientation of (1.3) for the boundary
conditions g:ew for k=Fk; and E=ko. In both cases the vector field has a degree
one singularity at the origin where «(0)=0. For k=k; the energy is minimized by a
vector field that has a splay orientation near the singularity. For k= ks, however, the
energy is minimized by a vector field that has a bend orientation near the singularity.

Since there is a subsequence u, that converges to u* on compact subsets away
from the singularities in C* for k€N [5], then the behavior of u., will be similar to
u* for small enough €. Given a singularity a,,, we have

.. (5.2)
+iy if k=ks.

u*(py+an)—>{

in L?(0B1(0);C) as p— 0 [5]. Hence, we expect for a small enough chosen ¢, to see a
similar pattern, which we generally do for a small enough €, which we discuss further.

For k=k,, the entire vector field in Figure 5.1(a) has a splay pattern, satisfying
both the boundary condition and (5.2). For k=ko the vector field in Figure 5.1(b)
has a spiral pattern, with a transition from a splay pattern at the boundary to a
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Qrigntation of vector field u Origntation of vectar field u
T T T

ik o

06

04r

nzr

-2

-041

-06F

-6

(a) Orientation of field for k = k1, with Je(u) =14.844.(b) Orientation of field for k= k2, with Je(u)=6.333.

Figure 5.2: The vector field of the solution with boundary data g=ie*® for e=0.1.

bend pattern at the singularity. Similarly for g=14e? and k =k, the entire vector field
in Figure 5.2(b) has a bend pattern, but for k=% the vector field in Figure 5.2(a)
exhibits a spiral pattern, with a transition from a bend pattern at the boundary to a
splay pattern at the singularity. This pattern is similar to the experiment described
in the introduction from [9].

The steady-state, degree one solutions in Figures 5.1 and 5.2 can be represented
in the form

w(r,0) =v(r)f+w(r)d = [v(r)+iw(r)]e”, (5.3)

where the scalar functions v(r) and w(r) represent splay and bend components of u
in the radial direction 7#(6)= (cosf,sinf) and angular direction 6(8)= (—sind,cosf),
respectively. These components satisfy the coupled ordinary differential equations
(ODEs)

v 1dv 1 v
ki —+—-———= —(1—v?—w?) = 4
1{dr2+rdr T2U}+e2( v w) 0, (5-4)

d>w  1dw 1 w
kz{derrrdr—rQw}jLe(1—v2—w2)=07 (5.5)
with ©v(0)=w(0)=0. The pure splay solution in Figure 5.1(a) corresponds to the
boundary conditions v(1) =1 and w(1) =0, with w(r) vanishing identically. The spiral
solution in Figure 5.1(b) satisfies the same set of boundary conditions, but both v(r)
and w(r) are non-zero. Similarly, the solutions in Figure 5.2 correspond to boundary
conditions v(1) =0 and w(1) =1. The pure bend solution with v(r)=0 in Figure 5.2b
and spiral solution in Figure 5.2a can be regarded as the result of interchanging the
roles of the constants k1 and ko and the components v(r) and w(r) in these ODEs.
The corresponding solutions that are related by this symmetry have the same energy;
that is, the solutions in Figure 5.1(a) and Figure 5.2(b) have the same energy J.(u),
as do those in Figure 5.1(b) and Figure 5.2(a).
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Figure 5.3: The behavior of the steady-state spiral solution as a function of € for
k1=1.5 and k3 =0.5. Left: The maximum value of the bend component wy,.x versus
e, exhibiting a bifurcation from the splay solution (with wpax =0) at e.~0.244.
Right: The energy J.(u) of the spiral solution (black curve) and the splay solution
(red curve) versus ¢, indicating the stability of the spiral solution for € <e,.
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Figure 5.4: The radial component v(r) (black curves) and angular component w(r)
(red curves) of the steady-state spiral solution with k; =1.5 and ks =0.5 for e=0.2
(dashed curves) and e=0.01 (solid curves).

Finite difference solutions to the ODEs were computed using a quasi-Newton
method and compared with the spectral solutions. The results show that the spiral
solution in the Figure 5.1b with k= k- is obtained for small enough values of €, and is
found to have a lower energy than a pure splay solution would have under the same
conditions. Indeed, as € is decreased the spiral solution is found to bifurcate from the
splay solution at a critical value of €.~ 0.244 as shown in the left figure of Figure 5.3.

For € >¢., the lowest energy solution is a splay solution with a vanishing bend
component w(r). For e<e. a spiral solution has the lower energy, as shown in the
right figure of Figure 5.3. The components of the spiral solution are shown in Fig-
ure 5.4 for two values of € <e.. Near the bifurcation point the magnitude of the bend
component w(r) is small, but with decreasing e the bend component steadily increases
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g= li:gl ki=ko=1| k1=0.5,ko=1.5 | k1 =1.5,k;=0.5
a=0 11.5812 6.3326 14.8444
a=0.5 11.1397 6.1115 14.2427
a= %(1+Z‘) 11.1397 6.1115 14.2427
a=0.57 11.1397 6.1115 14.2427
a=0.7 10.5803 5.8295 13.6071
a=T2(1+i) | 10.5803 5.8205 13.6071
a=0.74 10.5803 5.8295 13.6071

Table 5.1: Energy of minimizer for various boundary conditions, with e=0.1.

in magnitude and exhibits a boundary layer structure near r=0. The value of the
bifurcation point €. varies strongly with k; and ko, and as k; tends to one while
keeping ko =2 — k1, the bifurcation point €. tends to zero and the spiral solution gives
way to the splay solution. Analogous results are obtained for the case k =k, with the
roles of the bend and splay components reversed. We note that the spiral solution
shown in Figure 5.1(b) is not unique: equation (5.5) is invariant under a sign change
in w(r), which changes the orientation of the spiral pattern in Figure 5.1(b) from
counterclockwise to clockwise. Similarly, the spiral solution shown in Figure 5.2(a)
is also not unique: equation (5.4) is invariant under a sign change in v(r), which
converts the inward spiral in Figure 5.2(a) to an outward spiral.

5.1.2. Energies

Table 5.1 compares the computed energy values J(u) for degree one solutions with
various boundary conditions and values of k; and ko. The points a =0.5, v/2(1+1) /4,
and 0.5¢ lie on the circle of radius 0.5 and the points a=0.7, 7v/2(141)/20, and
0.7: lie on the circle of radius 0.7. Table 5.1 suggests that for distinct boundary
functions ¢1 =(z—a1)/|x—a1| and go=(x—az)/|x—az| with |a;|=|az| the energy
may be the same; this can be verified analytically. Indeed, since a1 = aas with |a|=1,
we can express ¢ as g1(x) =aga(y), where y=ax, giving |y|=1. Take u; to be a
minimizer to (1.3), with u1]|op, =¢1, and us to be a minimizer to (1.3), with us|sp, =
g2 Denote i (x) =au (ax) and s (z) = aug(ax). Then 41]op, = g2 and Uszlop, =g1-
Using a comparison argument and direct calculations, we have that J.(u1)=J(uz)
as indicated in Table 5.1.

Figure 5.5 shows the energy decay curves given the boundary condition g=
e9+7/2) and initial conditions up=e"™/2 | 2/(]z|40.1). In the case k= ks, where the
bend consant is the minimal constant, the initial condition was fairly close to the min-
imal configuration and the vector field remained tangential. As seen in Figure 5.5(b)
the energy rapidly decayed and remained fairly cons