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Abstract. This work investigates properties of a Smectic C* liquid crystal film
containing defects that cause distinctive spiral patterns in the film’s texture. The
phenomena are described by a Ginzburg-Landau type model and the investiga-
tion provides a detailed analysis of minimal energy configurations for the film’s
director field. The study demonstrates the existence of a limiting location for the
defects (vortices) so as to minimize a renormalized energy. It is shown that if the
degree of the boundary data is positive then the vortices each have degree +1
and that they are located away from the boundary. It is proved that the limit of
the energies for a sequence of minimizers minus the sum of the energies around
their vortices, as the G-L parameter ε tends to zero, is equal to the renormalized
energy for the limiting state.

Ce travail étudie les propriétés d’un Smectique C* film de cristaux liq-
uides que contient des défauts qui entraı̂nent des motifs distinctes spirale dans
la texture du film. Les phénomès sont décrit par un modéle de type Ginzburg-
Landau et la enquête apporte une analyse detaillée des configurations d’énergie
minimale pour le champ directeur du film. L’étude démontre l’existence d’un
limiter emplacement pour les défauts (tourbillons) pour minimiser une énergie
renomrmalisée. Il est montré que si le degré des valeurs limites est positif ensuite
les tourbillons chaque ont un degré +1 et qu’ils sont situés loin de la frontière. Il
est prouvé qu’ á la limite des énergies pour un séquence des minimiseurs moins
la somme des énergies autour leurs tournillons, comme le paramètre G-L ε tend
vers zéro, est égale à la énergie renormalisée pour l’état limitatif.

1. Introduction
We study the occurrence of point defects in a thin ferroelectric smectic C* (Sm C*)
liquid crystal by using a director field description based on the Ginzburg-Landau
theory. The unknown function u is a vector field in R2. When convenient, for ease
of notation, we view it as a C-valued function such that u = u1(x1,x2)+ iu2(x1,x2)
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for (x1,x2) in a bounded domain Ω in R2. We assume Ω has a smooth (C3) boundary
in the plane and that Ω represents the reference configuration of a very thin liquid
crystal material.

We analyze minimizers for a Ginzburg-Landau type energy,

Jε(u) =
1
2

∫
Ω

(
ks(divu)2 + kb(curlu)2 +

1
2ε2 (1−|u|

2)2
)

dx =
∫

Ω

jε(u,∇u)dx,

(1.1)
where ks and kb represent the two dimensional splay and bend moduli for the film
respectively, with ks,kb > 0. Here Jε(·) is defined for u ∈ H1

g (Ω;R2), consisting of
fields u ∈ H1(Ω;R2) with Dirichlet boundary conditions, u|∂Ω = g ∈ C3(∂Ω;S1)
such that deg(g,∂Ω) = d > 0. The variable ε > 0 represents the radius of the defect
cores. Previous work has considered the case where ks = kb, reducing to the classical
Ginzburg-Landau functional [1, 2, 3]. Our work focuses on the cases where ks 6=
kb. The elastic energy term of (1.1) is used to model thin film liquid crystals with
chirality, such as a Sm C* material. The resulting pattern consists of a family of
point defects in the film forming vortices in the molecular texture that spiral in a
fashion determined by the relative values for ks and kb; see [4].

1.1. Main Results
By denoting k = min{ks,kb}, we can express (1.1) as

Jε(u) = J̄ε(u)+ k
∫

Ω

det ∇udx = J̄ε(u)+ kπd (1.2)

for u ∈ H1
g (Ω;R2) where

J̄ε(u) =
∫

Ω

j̄ε(u,∇u)dx

=


1
2

∫
Ω

(
ks|∇u|2 +(kb− ks)(curl u)2 +

1
2ε2 (1−|u|

2)2
)

dx if k = ks

1
2

∫
Ω

(
(kb|∇u|2 +(ks− kb)(div u)2 +

1
2ε2 (1−|u|

2)2
)

dx if k = kb.

(1.3)

Then u ∈ H1
g (Ω;R2) is a minimizer of Jε(u) if and only if u is a minimizer for

J̄ε(u). Hence, it suffices to consider the minimizers of equation (1.3) and analyze
this functional. In this way, by the strict convexity of the integral in (1.3), we have
the existence of a minimizer uε for each ε; see [5].

We need a detailed description of Ω. Let D ⊂ R2 be a bounded, simply con-
nected domain with a C3 boundary Γ0. For ` = 1, . . . ,k let Λ` ⊂ D be pair-wise
disjoint, simply connected sets with C3 boundaries Γ`. Consider the domain Ω =

D \
k
∪
`=1

Λ` where we take the natural orientation for ∂Ω =
k
∪
`=0

∂Γ`, such that Γ0 is

oriented counter-clockwise and Γ` are oriented clockwise for 1 ≤ ` ≤ k. For each
g ∈C3(∂Ω;S1) set d` := winding number of g|Γ`

with respect to the curve’s orien-

tation, and denote the degree d(g,∂Ω) := d =
k
Σ
`=0

d`. We fix k points, y` ∈ Λ`, and

set w(x) =
k
∏
`=1

(
x−y`
|x−y`|

)−d`
= eiζ (x) for x ∈ Ω. Thus ζ is a multi-valued, harmonic
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expression such that ∇ζ (x) is point-wise well defined. We use w(x) to fix specific
representations of functions having boundary values with winding numbers d` with
respect to Γ` for 1≤ `≤ k. The minimizers of the energy functional over H1

g have a
number of structural properties that lead to the first main result of the paper.

Theorem A. Let {uε} be a sequence of minimizers for Jε(u) over H1
g such that

ε → 0. Then there is a subsequence {uε`
}, a function h ∈ H1(Ω) and d points

{a1, . . . ,ad} ∈Ω such that

|uε`
| → 1 uniformly on compact subsets of Ω\{a1, . . . ,ad},

and more generally uε`
(x)→ u∗(x) = ei(h(x)+ζ (x)+∑

d
n=1 θan (x))

(1.4)

in Cα
loc(Ω \ {a1, . . . ,ad}) and in Cm

loc(Ω \ {a1, . . . ,ad}) for every 0 < α < 1 and in-
teger m ≥ 0, in which θan = θan(x) denotes the polar angle of x with respect to the
center an.

The d-tuple a = (a1, . . . ,ad) ∈ Ωd represents the point defects within the do-
main Ω. The energy functional, just as in [1], has a renormalized form,

kW (b)+H(b,ks,kb) for b ∈Ω
d (1.5)

here

W (b) =
1
2

∫
∂Ω

(
2Gb(g×∂τ g)− (∂ν Gb)Gb

)
dσ +πd

− ∑
m 6=n

π ln(|bn−bm|)+
d

∑
n=1

k

∑
`=1

πd` ln(|bn− y`|)
(1.6)

and

H(b,ks,kb) = inf
φ

H (b,φ ,ks,kb)

=


inf
φ

1
2

∫
Ω

(
ks|∇φ |2 +(kb− ks)(curl v)2

)
dx if k = ks

inf
φ

1
2

∫
Ω

(
kb|∇φ |2 +(ks− kb)(div v)2

)
dx if k = kb

(1.7)

where Gb(x)=∑
d
n=1 ln(|x−bn|)−∑

k
`=1 d` ln(|x−y`|), v(x)=∏

d
n=1

x−bn
|x−bn|e

i(φ(x)+ζ (x)),

and H (b,φ ,ks,kb) is minimized over the class of functions φ ∈ H1(Ω) such that
v = g on ∂Ω. The expression (1.5) is a variant of the renormalized energy from
[1]. Moreover the two agree for the case where ks = kb and Ω is simply connected.
By the definition of (1.5), we have that in order for the renormalized energy to
be finite, bn 6= bm for n 6= m and bn /∈ ∂Ω for every n. For each such set of con-
figurations b, there exists a function hb, in a particular class of functions, such
that H(b,ks,kb) = H (b,hb,ks,kb), which leads to the second main theorem of this
work.

Theorem B. Let {u`} be a sequence of minimizers for Jε`
, for which a= (a1, . . . ,ad)

is a limiting configuration of distinct defects as ε`→ 0 as described in Theorem A
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and h ∈ H1(Ω) is as in Theorem A. Then it holds that H(a,ks,kb) = H (a,h,ks,kb)
and

lim
`→∞

(
Jε`

(u`)− kπd ln
(

1
ε`

))
= kW (a)+H(a,ks,kb)+dγ

where γ is a fixed constant associated with each of the defect core’s energy. More-
over, the renormalized energy attains its minimum among b ∈Ωd with distinct com-
ponents at b = a.

The term kπd ln( 1
ε
) represents the energy around the vortices to leading order.

The limit as ε tends to zero of the difference between this term and (1.1) gives
the remaining energy over the domain Ω minus the vortices, with their location a,
minimizing (1.5). For the case ks = kb the proofs for Theorems A and B follow from
the results in [1] and [6] if Ω is simply connected, and their proofs can be extended if
the domain is multiply connected. Theorem B allows us to characterize the limiting
pattern, u∗(x), near each am. This follows from the fact that h minimizes (1.7). For
the case ks = kb this implies that h is a harmonic function such that v = g on ∂Ω.
Thus

u∗(ρy+am)→ βmy

as ρ → 0 for each y ∈ ∂B1(0) where βm = e
i(h(am)+ζ (am)+ ∑

n 6=m
θan (am))

. For ks 6= kb
we find a much different structure. In this case the integral in (1.7) involving either
the term curl v or div v must be finite, and as a result pins the values of h near each
am so that

u∗(ρy+am)→

{
±y if ks < kb

±iy if kb < ks

in L2(∂B1(0);C) as ρ → 0. Thus if ks < kb the limiting texture u∗ has a pure splay
pattern near each defect and if kb < ks then u∗ asymptotically has a pure bend pattern
near each am.

1.2. Applications
Smectic C materials are made of layers of liquid crystal molecules that pack so that
their long axes form a fixed angle 0< θ0 < π/2 with the layer normal. The pattern is
described using the layer structure and a director field n(x) for the liquid crystal. The
director is a unit vector field that lies parallel to the local average of the molecular
long axes at x. One can then express n(x) = cos(θ0)ν(x)+ sin(θ0)c(x) where ν(x)
and c(x) each are unit vector fields that are respectively parallel and perpendicular
to the layer normal at x. These two fields are the fundamental unknowns that are
used to characterize the material’s configuration [7]. For the case of a thin film
the layers are planer, given by the domain Ω ⊂ R2 such that ν(x) = 〈0,0,1〉 and
c(x) = 〈c1(x),c2(x),0〉 with x = (x1,x2). The film can be just several layers thick
and the elastic energy for the liquid crystal pattern is given by the Oseen-Frank
energy. Each layer in a smectic C (Sm C) liquid crystal can be represented as a
two-dimensional liquid [8] and the integral is taken over the film,

1
2

∫
Ω

(
ks(div c)2 + kb(curl c)2

)
dx. (1.8)
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A Sm C* liquid crystal additionally forms a spontaneous polarization field that pro-
duces elastic and electro-static contributions to the energy. The polar field generates
an elastic stress on the film whose effect is modeled by introducing boundary values
for c(x) = g(x) on ∂Ω; see [4]. The field induces an electro-static contribution that
appears in our energy by increasing the splay constant kb above its bare elastic value
[9] and this is a motivation for studying the case ks 6= kb.

If a smoke or dust particle lands on a free-standing film a defect forms in the
film’s texture. The particle induces a singularity in the spontaneous polarization field
that in turn causes an island, several layers thicker than the film, to form around the
defect. The island’s shape eventually stabilizes and the island migrates within the
film so as to reduce the total energy. Various experiments have been conducted and
models put forward to investigate this phenomenon. See [4, 9, 10, 11, 12]. In these
papers the notion of the c director is generalized to allow for defects. The experi-
ments reported in [4, 9, 10, 11] indicate that a stable island is disk-like and that the
c-director is tangential at the island’s edge, so that the winding number of c on the
edge of the disk is +1. In [4], Lee et al. model the island–defect ensemble by setting
Ω = BR(0) \Bε(0) with the defect represented by the ε void at the origin and in-
vestigate numerically the stability of rotationally invariant equilibria for (1.8). Their
simulations for the case ks < kb and ε sufficiently small, indicate that minimizers
for (1.8) over H1(Ω;S1) subject to tangential boundary conditions on ∂BR(0) form
a simple spiral, turning from the tangential pattern at the edge of the disk to radial
near the defect at the center.

In this paper we follow an order parameter approach as in [12] for the energy
(1.1). The unknown field u(x) is taken to be a generalization of the c director. In
this case u need not have unit length and vanishes at a defect where the smectic
order is allowed to melt. This description, in contrast to the one above, does not
presuppose the nature or location of individual defects. We can apply Theorem A to
obtain information on minimizers for the problem of an island, Ω = BR(0) with the
tangential boundary values g(x) =± x⊥

R ( where x⊥ = (−x2,x1)≡ ix). If ks < kb and
ε is taken sufficiently small it follows that a minimizer has one defect with degree
+1 in BR(0), moreover the minimizer’s pattern is near radial in a neighborhood
of the defect. This is consistent with what was observed in the experiments and
simulations from [4].

In [12], Silvestre et al. investigate a different aspect of the problem. They con-
sider a free standing SmC∗ film occupying a simply connected region D containing
d disjoint circular islands {BR j(x j); 1 ≤ j ≤ d} and they investigate the texture in
the background film Ω ≡ D\

⋃d
j=1 BR j(x j). In this case ∂Ω has d + 1 components,

∂D and ∂BR j(x j) for 1 ≤ j ≤ d. On ∂D they take g = const. and g = ± (x−x j)
⊥

R j

on ∂BR j(x j) for 1 ≤ j ≤ d. It follows that deg(g,∂Ω) = −d. The simulations and
experiments in [12] exhibit d topological defects in Ω, each with degree −1, as
companions to the d chiral islands. Our results do not directly apply to this set-
ting. For the case of the classic Ginzburg-Landau energy (2.7), structure proved
for the case deg(g,∂Ω)> 0 directly translates to the same information for the case
deg(g,∂Ω) < 0. This is not obvious for the energy (1.1). Nevertheless the present
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analysis should be useful for investigating the case of boundary data with negative
degree.

Our paper is organized as follows. In Section 2, we prove Theorem A, de-
veloping a number of qualitative features for the minimizers of Jε . We express the
integral in the form of (1.2) – (1.3). Written in this way one sees that minimizers
form a family of low energy states for the Ginzburg-Landau functional (2.7), that
is a family {uε} ⊂ H1

g (Ω) satisfying (2.9) for a fixed constant K. It is proved in
[13, 14, 15] that such a family has a number of structure and compactness proper-
ties, in particular it is shown that for a sequence εk→ 0, there exists a subsequence
{uεk(`)} and a function u∗ such that uεk(`) → u∗. The analysis in [15], due to Fanghua
Lin, contains the detailed description of u∗ that is needed here and we expand on
this work in Proposition 2.3. We then use the fact that the uε are minimizers to re-
fine the notion of convergence away from the defects of u∗. Our work here builds
on the investigation of minimizers for the Ginzburg-Landau energy (2.7) carried out
by Brezis-Bethuel-Hélein in [1]. Their work however relies on a priori estimates for
sup |uε |, which they obtain by applying a maximum principle that is not available
in the case at hand. Here we proceed as in [16], obtaining bounds on the bulk term
of the energy, giving us a priori L4 estimates for the sequence of minimizers. A
uniform bound on sup |uε | follows from this and elliptic estimates. In Section 3 we
analyze a class of polar functions for a particular set of points b = (b1, . . . ,bd) and
show that the spherical average of these functions around bn tend to either 0 or π

2 ,
mod π , depending on the relative values of ks and kb. In Section 4, we construct the
renormalized energy in (1.5). We show that for each a, there exists a polar function
ha that minimizes the renormalized energy for a. In Section 5, we prove Theorem
B.

2. Qualitative Properties of Minimizers
We begin by developing a number of structural properties for minimizers of (1.1) for
each ε . As stated before, the minimizers in H1

g (Ω;R2) of (1.1) are also minimizers
in H1

g (Ω;R2) of (1.3). In translating the variational problem into minimizing the
energy (1.3) in H1

g (Ω;R2), we have a strictly convex integrand (in the gradient),
giving us the existence of a minimizer to our problem [5]. Then, taking the first
variation of (1.3), we get that the minimizer uε satisfies∫

Ω

(
(ksu1

x1
)v1

x1
+(ksu1

x2
+(kb− ks)(u1

x2
−u2

x1
))v1

x2
+(ksu2

x1
+(kb− ks)(u2

x1
−u1

x2
))v2

x1

+(ksu2
x2
)v2

x2
+

1
ε2 (u(1−|u|

2)) · v
)

dx = 0 if k = ks∫
Ω

(
(kbu1

x1
+(ks− kb)(u1

x1
+u2

x2
))v1

x1
+(kbu1

x2
)v1

x2
+(kbu2

x1
)v2

x1

+(kbu2
x2
+(ks− kb)(u1

x1
+u2

x2
))v2

x2
+

1
ε2 (u(1−|u|

2)) · v
)

dx = 0 if k = kb

(2.1)
for v ∈H1

0 (Ω;R2). From regularity theory [17, 18], we have uε ∈C∞(Ω)
⋂

C2,α(Ω)

for each 0 < α < 1 and ε > 0, since ∂Ω is C3, g ∈ C3, and the coefficients of the
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elliptic elastic energy term are constant. Thus we conclude that |uε |2,α;Ω ≤ C(ε).
Using integration by parts, we have that the Euler-Lagrange equation the minimizer
satisfies is

−ks∆u1− (kb− ks)(u1
x2x2
−u2

x1x2
) =

1
ε2 u1(1−|u|2)

−ks∆u2− (kb− ks)(u2
x1x1
−u1

x2x1
) =

1
ε2 u2(1−|u|2)

(2.2)

if k = ks, and

−kb∆u1− (ks− kb)(u1
x1x1

+u2
x2x1

) =
1
ε2 u1(1−|u|2)

−kb∆u2− (ks− kb)(u2
x2x2

+u1
x1x2

) =
1
ε2 u2(1−|u|2)

(2.3)

if k = kb in Ω, with u = g on ∂Ω. For each ε > 0, there is an upper and a lower
bound that can be obtained for the integral (1.3).

Proposition 2.1.

J̄ε(uε)≤ kπd ln(
1
ε
)+C2(Ω,g,d,ks,kb) (2.4)

for a minimizer uε and

J̄ε(u)≥ kπd ln(
1
ε
)−C1(Ω,g,d,ks,kb) (2.5)

for any function u ∈ H1
g where C1 and C2 are positive constants.

Proof. For the upper estimate, this proof is similar to the proof of Lemma 2.1 in
[6]. Consider the case when Ω = BR(0) = BR and g(x) = β

x
|x| , β =±1 if k = ks or

β =±i if k = kb. We drop the ε for notational purposes. Denote the values

Īβ (ε,R) = inf
u∈H1

g

{∫
BR(0)

j̄ε(u,∇u)dx
}
. (2.6)

Let Īβ (t) = Īβ (t,1). By using a change of variables, Īβ (ε,R) = Īβ (1, R
ε
) = Īβ (

ε

R ).
Then, using the same method as in the proof of Theorem 3.1 in [1], noting that
div( ix

|x| ) = curl( x
|x| ) = 0, we have Īβ (t1)≤ kπ ln( t2

t1
)+ Īβ (t2) for all t1 ≤ t2.

Fix d points, a1,a2, . . . ,ad ,an 6= am for n 6= m in Ω and R > 0 such that

BR(an)⊂Ω for each n and BR(an)∩BR(am) = /0 for every n 6= m.

Let ΩR = Ω\
⋃d

n=1 BR(an) and consider ḡ(x) : ∂ΩR→ S1 such that

ḡ(x) =


g(x), if x ∈ ∂Ω

eiθ , if x = a j +Reiθ ∈ ∂BR(a j) for some j and k = ks

ieiθ , if x = a j +Reiθ ∈ ∂BR(a j) for some j and k = kb.
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Note that deg(ḡ,∂ΩR) = 0, hence there exists a smooth function v : Ω̄R→ S1 such
that v|∂ΩR = ḡ. Then by the above claim for 0 < ε < R,

J̄ε(u)≤
∫

ΩR

j̄ε(v,∇v)dx+
d

∑
i=1

Īβ (ε,R)

≤ kπd ln(
1
ε
)+C2.

Define

Fε(u) = Fε(u;Ω) =
1
2

∫
Ω

(
k|∇u|2 + 1

2ε2 (1−|u|
2)2
)

dx. (2.7)

Now, let u ∈ H1
g be any function. Note that J̄ε(u) ≥ Fε(u). The lower bound

(2.5) holds for a minimizer vε ∈ H1
g for Fε(·) and is proved in [1] for the case that

Ω is star shaped. The general case follows from [6] and [1]. (See [13] and[14] for
alternative proofs.) It follows that the lower bound holds for any u ∈ H1

g . �

The following corollary is a direct result of the previous proposition, utilizing
a method described in [14].

Corollary 2.1. If u is a minimizer for J̄ε(u), then there exists C4 =C4(g,Ω,ks,kb,d)
such that ∫

Ω

(
(kb− ks)(curl u)2 +

1
2ε2 (1−|u|

2)2)
)

dx≤C4 if k = ks,∫
Ω

(
(ks− kb)(div u)2 +

1
2ε2 (1−|u|

2)2)
)

dx≤C4 if k = kb.

(2.8)

Proof. For clarity, we provide a short proof. From Proposition 2.1, we have that for
any minimizer uε ∈ H1

g , J̄ε(uε)≤ kπd ln(ε−1)+C2. Let F2ε(u) be as defined in the
proof of Proposition 2.1. Then F2ε(uε)≥ kπd ln(ε−1)−C3. Thus (2.8) follows from
considering the expression J̄ε(uε)−F2ε(uε). �

Using the estimate from the corollary and the strong ellipticity of the system
in (2.2) and (2.3), we obtain several bounds for minimizers over the entire domain
for small ε . Let x ∈Ω and set

Ω̃ = {y : εy+ x ∈Ω} and ũ(y) = uε(εy+ x) for y ∈ Ω̃.

Then from (2.8) we have that ||ũ||4;Ω̃
⋂

B1(0) ≤ C where C is independent of x ∈ Ω

and 0 < ε ≤ 1. If we express (2.2) and (2.3) as Lku = ε−2f(u), where f(u) = u(1−
|u|2), then Lk is a second order strongly elliptic operator with constant coefficients.
Moreover we have that Lkũ = f(ũ) on Ω̃

⋂
B1(0). Based on the L4 a priori estimate,

the ellipticity of the operator Lk, and the smoothness of both the boundary data and
∂Ω, the proof of the next proposition follows just as the proof for Lemma 3.1 in
[16].

Proposition 2.2. There exists a constant C5 = C5(g,Ω,ks,kb,d) so that if uε is a
minimizer to J̄ε(u), then

|uε |,ε|∇uε | ≤C5 in Ω, for 0 < ε < 1.
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From Proposition 2.1 and the definition of j̄ε(u,∇u), we get that

Fε(uε)≤ kπd ln(
1
ε
)+K (2.9)

for every 0< ε < 1 and minimizer uε to J̄ε(·). With this estimate we are able to apply
a Structure and Compactness theorem to the sequence of minimizers for J̄ε(u).

Proposition 2.3. There exists constants δ > 0 and C depending on K,k,g, and Ω so
that for any sequence of functions uε ∈ H1

g (Ω;R2) with ε ↓ 0 satisfying (2.9) there
exists a subsequence {uε`

}, points {a1, . . . ,ad} ⊂ Ω, and a function h(x) ∈ H1(Ω)
so that

min{dist(am,∂Ω), |am−an|,m 6= n,1≤ m,n≤ d} ≥ δ , ‖h‖H1 ≤C,

and

uε`
→

d

∏
m=1

x−am

|x−am|
ei(h(x)+ζ (x))

where the convergence of {uε`
} is weak in H1

loc(Ω \ {a1, . . . ,ad};C) and strong in
L2(Ω;C).

Proposition 2.3 is due to Fanghua Lin [3, 15, 19, 20] if Ω is simply connected.
In this case the limit takes the form ∏

d
m=1

x−am
|x−am|e

ih(x). We modify his arguments
below to prove it for general Ω. We first need a lemma.

Lemma 2.1. There is a constant K′, depending only on K,k,g, and Ω so that if u
satisfies (2.9) then w∗(x)u(x) = e−iζ (x)u(x) satisfies

Fε(w∗u)≤ kπd ln
(1

ε

)
+K′.

Proof. For a ∈ C we denote a∗ as the complex conjugate of a. Writing wu = eiζ u.
We have

Fε(wu) = Fε(u)+ k
∫

Ω

I m{u∗∇ζ ·∇u}dx+
k
2

∫
Ω

|∇ζ |2|u|2 dx.

Since deg(wu;∂Ω) = d we have the lower bound

Fε(wu)≥ kπd ln
(1

ε

)
−C

where C depends on wu|∂Ω = wg. Second, since ζ is smooth and fixed in Ω we have
that ∫

Ω

|∇ζ |2|u|2 dx≤M
∫

Ω

|u|2 dx≤M1

(
ε

2 ln
(1

ε

)
+1
)
.

With these two estimates, together with our hypothesis on Fε(u) we get

−
∫

Ω

I m{u∗∇ζ ·∇u}dx≤C
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where C depends only on K,k,g, and Ω. Finally we can expand and estimate

Fε(w∗u) = Fε(u)− k
∫

Ω

I m{u∗∇ζ ·∇u}dx+
k
2

∫
Ω

|∇ζ |2|u|2 dx

≤ kπd ln
(1

ε

)
+K′.

�

Proof of Proposition 2.3. Let uε ∈ H1
g (Ω;R2) with ε ↓ 0 satisfying (2.9). Set zε =

w∗uε . Then the winding number for zε |Γ j is 0 for 1 ≤ j ≤ k and we can extend zε

onto Λ j as a function in H1(Λ j;S1) that is independent of ε for each j. We also
have that the winding number for zε |Γ0 is d. Thus setting zε |Γ0 = g̃, we have that the
sequence {zε} ⊂ H1

g̃ (D;C) and that

Fε(zε ;D)≤ kπd ln
(1

ε

)
+K′′.

where K′′ is independent of ε . We can apply the Proposition for the simply con-
nected domain D; see [15]. We find a subsequence {zε`

}, points {a1, . . . ,ad} ⊂ D,
and h ∈ H1(D) so that

zε`
→ z∗(x) =

d

∏
m=1

x−am

|x−am|
eih(x) in D.

Thus since uε`
= wzε`

we have that

uε`
→

d

∏
m=1

x−am

|x−am|
ei(h(x)+ζ (x)) in Ω.

We know that the {a1, . . . ,ad} are uniformly bounded away from each other and Γ0.

It remains to show that they are bounded away from
k⋃

j=1
Λ j. If this is not so, then we

can find a case with a` ∈ Λ j for some ` and j. We choose r > 0 sufficiently small so
that Br(a`)

⋂
{an : n 6= `}= /0. By construction zε`

(x) for x ∈ Λ j are independent of
ε` and in H1(Λ j). Thus z∗ ∈ H1(Λ j). On the other hand we have

z∗(x) =
x−a`
|x−a`|

z̃(x) such that |z̃(x)|= 1 for x ∈ Br(a`). Moreover z̃ ∈ H1(Br(a`)).

Thus z∗ /∈ H1(Λ j) and this is a contradiction. �

For ρ > 0 set Ωρ = Ω\
⋃d

m=1 Bρ(am).

Proposition 2.4. Let {uε`
} be a sequence of minimizers converging to u∗(x) =

∏
d
m=1

x−am
|x−am|e

i(h(x)+ζ (x)) in L2(Ω). Then for each ρ > 0 the convergence is in H1(Ωρ)

and ε
−2
`

∫
Ωρ

(1−|uε`
|2)2 dx→ 0 as `→∞. Moreover, u∗ is a local minimizer for the

limiting energy in H1(Ωρ ,S1).
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Proof. The proof is similar to the proof of Lemma 3.9 in [16]. For notational pur-
poses we write {u`}= {uε`

}, where ε` is a subsequence of ε and ε → 0. By Propo-
sition 2.3, u` ⇀ u∗ in H1(Ωρ) for every ρ > 0 and u` is a local minimizer for∫

Ωρ
j̄ε(u,∇u)dx. As in the proof of Lemma 3.9 of [16], choose x̄ ∈ Ω̄\{a1, . . . ,ad},

assuming first that x̄ /∈ ∂Ω and let d̄ = d̄(x̄) be such that B̄2d̄ = B̄2d̄(x̄) ⊂ Ω \
{a1, . . . ,ad}. Set ω(x) = h(x)+ ζ (x)+∑

d
n=1 θan(x) where x−am

|x−am| = eiθam (x). Then
with out loss of generality ω is single valued in B2d̄ . Furthermore ω ∈ H1(B2d̄) by
Proposition 2.3 and u∗(x) = eiω(x) on B̄2d̄ . From Corollary 2.1, Proposition 2.3, and
as in the proof of Lemma 3.9 of [16], for a subsequence {u`′} that we do not relabel,
there exists a radius d such that d̄ ≤ d ≤ 2d̄ and for which

1
2

∫
∂Bd

(
k|∂τ u`|2 +

1
2ε2

`

(1−|u`|2)2
)

dσ ≤C1. (2.10)

It follows that {u`} converges to u∗ uniformly on ∂Bd and weakly in H1(∂Bd). Note
that degu∗

∣∣
∂Bd

= 0. Therefore degu`
∣∣
∂Bd

= 0 for sufficiently large `. Thus u`(x) can

be expressed as u`(x) = |u`(x)|eiω`(x) such that |u`(x)| 6= 0 for every x ∈ ∂Bd where
ω` converges to ω uniformly on ∂Bd and weakly in H1(∂Bd) as well.

Define, for each `, the function Φ`(r,θ) := φ`(r)(ω`(θ)−ω(d,θ)), where
d ≥ r = |x− x̄|,

φ`(r) =
{

1 if r = d
0 if r < r` < d

φ` is a smooth cut-off function and |∇φ`| ≤ 1
d−r`

, where r` is a sequence of radii
such that r`→ d so that ∫

∂Bd

|ω`−ω|2

(r`−d)
dσ → 0.

By construction and the fact that ω` ⇀ ω in H1(∂Bd), we get that Φ` → 0 in
H1(Bd) and Φ` → 0 uniformly in Bd . Let ū minimize

∫
Bd

j̄(u,∇u)dx in the set
{u ∈ H1(Bd ;S1) : u = u∗ on ∂Bd}. Consider the function eiΦ` ū. Then we have
eiΦ` ū→ ū in H1(Bd), and uniformly in Bd . Now, we construct comparison func-
tions

û` = |û`|eiΦ` ū on Bd

where
|û`|= 1 on Bd−ε`

,

|û`|= |u`| on ∂Bd ,

and for each θ , define |û`|(|x− x̄|,θ) to be linear for d−ε` ≤ |x− x̄| ≤ d. This gives
that û` = u` on ∂Bd . By construction, we get that û`→ ū uniformly in Bd , û`→ ū in
H1(Bd), and ε

−2
`

∫
Bd
(1−|û`|2)2 dx→ 0 as `→ ∞. These limits imply that

lim
`→0

∫
Bd

j̄ε`(û`,∇û`)dx =
∫

Bd

j̄(ū,∇ū)dx := J̄(ū)

where

j̄(u,∇u) =
{

ks|∇u|2 +(kb− ks)(curl u)2 if k = ks
kb|∇u|2 +(ks− kb)(div u)2 if k = kb.



12 Colbert-Kelly and Phillips

This notion for j̄(u,∇u) will be used throughout the rest of the work. Then by the
lower semicontinuity of the integral

∫
Ω

j̄(u,∇u)dx,∫
Bd

j̄(u∗,∇u∗)dx≤ liminf
`→∞

∫
Bd

j̄ε`(u`,∇u`)dx≤ limsup
`→∞

∫
Bd

j̄ε`(u`,∇u`)dx

≤ lim
`→∞

∫
Bd

j̄ε`(û`,∇û`)dx =
∫

Bd

j̄(ū,∇ū)dx

≤
∫

Bd

j̄(u∗,∇u∗)dx.

This implies that

lim
`→∞

∫
Bd

j̄ε`(u`,∇u`)dx =
∫

Bd

j̄(u∗,∇u∗)dx.

Since u` ⇀ u∗ in H1(Bd ;C), then by [21], u`→ u∗ in H1(Bd ;C). A further conse-
quence of the convergence of the integrals and the strong convergence in H1(Bd ;C)
is

lim
`→∞

ε
−2
`

∫
Bd

(1−|u`|2)2 dx = 0.

We have also showed that u∗ is a minimizer to J̄ in H1
u∗(Bd ;S1). We have proved our

assertions for a subsequence of the original sequence on Bd ⊃ Bd , for some radius
d. It follows that we have established the assertions for the full sequence on Bd .

Finally, suppose x̄ ∈ ∂Ω. Then let Ux̄ be a neighborhood of x̄ such that there
exists a smooth diffeomorphism ψ(x) defined on B2d such that ψ(x̄) = 0 and

ψ : Ux̄→ B+
2d

= {(x,y) : x2 + y2 < (2d)2,y > 0}.

Then we can carry out the same argument in B+
2d

, with ψ(x̄), push back into Ux̄, and
then argue as in the previous case. �

This next proposition shows that the norms of the minimizers converge uni-
formly to 1 outside of any positive radius distance away from the vortices. This
proof is similar to the proof of Lemma 3.10 in [16].

Proposition 2.5. Let {u`} be a sequence of minimizers with ε`→ 0, converging to
u∗(x) = ∏

d
m=1

x−am
|x−am|e

(ih(x)+ζ (x)) in L2(Ω). Then for each ρ > 0, |u`| → 1 uniformly

in Ωρ .

Proof. Fix ρ > 0 and assume that there exists a δ > 0, a subsequence {u`} (that we
do not relabel), and a sequence of points {x`} ⊂Ωρ so that |1−|u`(x`)|| ≥ δ . From
Proposition 2.2 there is a c(δ ) > 0 so that |1−|u`(x)|| ≥ δ

2 for x ∈ Bcε`
(x`)

⋂
Ω. It

follows that

ε
−2
`

∫
Ωρ

(1−|uε`
|2)2 dx≥ ε

−2
`

∫
Bcε`

(x`)
⋂

Ωρ

(1−|uε`
|2)2 dx≥C > 0

where C is independent of `. We have seen from Proposition 2.4 however that the
left side tends to 0 as `→ ∞ and this leads to a contradiction.

�
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The next two propositions prove higher regularity on the sequence of mini-
mizers on compact subsets of the domain away from the vortices. For the sequence
of minimizers {u`} that converges in H1

loc(Ω\{a1, . . . ,ad}), we have that |u`| con-
verges uniformly to 1 on every K ⊂⊂Ω\{a1, . . . ,ad}. The bulk term of the energy
has a non-degenerate minimum when |u| = 1. The elastic term of the energy is
strongly elliptic, as well as quadratic in the gradient term. Due to these facts, the
proofs of the following propositions follow from the proofs of Lemma 3.11 and
Lemma 3.12 from [16] respectively.

Proposition 2.6. Let {uε`
} be a sequence of minimizers for (1.1) in H1

g (Ω) con-
verging in H1

loc(Ω\{a1,a2, . . . ,ad}) as ε`→ 0. Then, for K ⊂⊂Ω\{a1,a2, . . . ,ad},
there exists constants `0 and C such that if `≥ `0, then

‖D2uε`
‖2;K ≤C.

Proposition 2.7. Let uε`
be the sequence of minimizers as in the previous lemma.

For each n > 2 and set K ⊂⊂Ω\{a1,a2, . . . ,ad}, there are constants C and `0 such
that

‖uε`
‖n,2;K ≤C for `≥ `0.

A consequence of Propositions 2.6 and 2.7 is that for each compact subset K
of Ω \ {a1, . . . ,ad} and for each n ≥ 2, we have the entire converging subsequence
of minimizers {uε`

} ∈ Hn(K) and bounded. This implies that u∗ ∈ Hn(K). Now, by
Sobolev’s Theorem and Arzelà-Ascoli Theorem, we have the following corollary

Corollary 2.2. Let {uε`
} be a sequence of minimizers converging to u∗. Then for

any 0 < α < 1, and each integer m

uε`
→ u∗ in Cα

loc(Ω\{a1, . . . ,ad}) and Cm
loc(Ω\{a1, . . . ,ad})

as `→ ∞.

Proof of Theorem A. Let {uε} be a sequence of minimizers to (1.1) such that ε ↓ 0.
Then we know it is also a minimizer of (1.3) for each ε . By applying Proposition 2.3,
it follows that there exists a subsequence {uε`

}, a function h, and points {a1, . . . ,ad}
such that

uε`
(x)→

d

∏
n=1

x−an

|x−an|
ei(h(x)+ζ (x)) = u∗(x) in H1

loc(Ω\{a1,a2, . . . ,ad}).

For each ρ > 0 it follows from Corollary 2.2 that we have uε`
→ u∗ in Cα(Ωρ) for

every 0 < α < 1, and uε`
→ u∗ in Cm(Ωρ) for every integer m ≥ 0, where Ωρ =

Ω\∪d
n=1Bρ(an). �

Remark 1. To be definite we point out that Theorem A applies to the case ks =
kb > 0, and that in this case our arguments are extensions of those from [1], [6],
and [15] that allow us to treat the case of a multiply connected domain. Moreover,
in this case the nature of h(x) is distinct. Indeed from Proposition 2.4 we have that
h is harmonic in Ω\{a1 . . . ,ad} and h ∈ H1(Ω). As such h is harmonic in Ω. (This
observation originates in [1]).

In the next section we show that in contrast with the case ks = kb, the values
of h are pinned at {a1 . . . ,ad} if ks 6= kb.



14 Colbert-Kelly and Phillips

3. Class of Functions for Each Configuration of Points
Assume that ks 6= kb. Define the set

T = {b = (b1, . . . ,bd) ∈Ω
d : bn 6= bm for n 6= m}.

Fix a configuration b ∈ T . We can choose f ∈C3(∂Ω) so that

g(x) = ei( f (x)+∑
d
n=1 θbn (x)+ζ (x)) f or x ∈ ∂Ω

where θbn is such that x−bn
|x−bn| = eiθbn (x) for x 6= bn. Note that f |Γ`

is uniquely deter-
mined, mod 2π, for each component Γ` of ∂Ω. Let φ ∈ H1(Ω) and set

v(x) = v(b,φ)(x) = ei(φ(x)+∑
d
n=1 θbn (x)+ζ (x)).

We define the set

A(b) =


{φ ∈ H1(Ω) : v(b,φ) = g on ∂Ω and

∫
Ω

(curl v)2 dx < ∞} if ks < kb

{φ ∈ H1(Ω) : v(b,φ) = g on ∂Ω and
∫

Ω

(div v)2 dx < ∞} if kb < ks.

It follows from Lemma 1.1 of [22] that φ = f + 2πt` on each component Γ` of
∂Ω, for some t` ∈ Z, for each φ ∈ A(b) . We prove in Proposition 4.1 that A(b) is
nonempty. Let ρ > 0 be such that Bρ(bn)⊂Ω and such that {Bρ(bn)} are pairwise
disjoint. For h ∈ A(b) define the function hn(x) = h(x) +∑m 6=n θbm(x) + ζ (x) for
x ∈ Bρ(bn). Set v = v(b,h). From the definition of A(b), we have∫

Bρ (bn)
(curl v)2 dx≤C if ks < kb,∫

Bρ (bn)
(div v)2 dx≤C if kb < ks,

for each 1≤ n≤ d such that C =C(v)< ∞. On Bρ(bn) we have that v = x−bn
|x−bn|e

ihn =

cos(hn)
x−bn
|x−bn| + sin(hn)i x−bn

|x−bn| . Since hn ∈H1(Bρ(bn)), curl x−bn
|x−bn| = div i x−bn

|x−bn| = 0,

and div x−bn
|x−bn| = curl i x−bn

|x−bn| =
1

|x−bn| , we obtain using Young’s Inequality that∫
Bρ (bn)

sin2(hn)

|x−bn|2
dx≤C if ks < kb,∫

Bρ (bn)

cos2(hn)

|x−bn|2
dx≤C if kb < ks.

(3.1)

From (3.1), we obtain the following proposition.

Proposition 3.1. Let b ∈ T and h ∈ A(b). Then we have
1

|∂Bρ(bn)|

∫
∂Bρ (bn)

hdσ → αn− ∑
m 6=n

θbm(bn)−ζ (bn) as ρ → 0,

for each 1≤ n≤ d where

αn =


cnπ for some cn ∈ Z if ks < kb

(2cn +1)π
2

for some cn ∈ Z if ks < kb.
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Proof. Let hn(x) = h(x)+∑m 6=n θbm(x)+ζ (x) and

h̄n(ρ) =
1

|∂Bρ(bn)|

∫
∂Bρ (bn)

hn dσ .

Define the functions ωn(x)= sin(hn(x)), ω̄n(ρ)= sin(h̄n(ρ)) if ks < kb, and ωn(x)=
cos(hn(x)), ω̄n(ρ) = cos(h̄n(ρ)) if kb < ks. Set ωn

ρ(y) = ωn(ρy+bn) for 0 < ρ < ρ0

where ρ0 is such that B2ρ0(bn) ⊂⊂ Ω \
⋃

m 6=n
B2ρ0(bm). With hn ∈ H1(Bρ0(bn)) and

(3.1) we get

lim
ρ→0
‖ωn

ρ‖2
1,2;B1

= lim
ρ→0

∫
Bρ (bn)

(
|∇ω

n|2 + |ω
n|2

ρ2

)
dx = 0. (3.2)

Note that h̄n(ρ)∈C((0,ρ0]). If the proposition is false there exists a constant δ0 > 0
and a sequence of radii {ρk} such that ρk→ 0 and

|h̄n(ρk)− tπ| ≥ δ0 > 0 if ks < kb,

|h̄n(ρk)−
(2t +1)π

2
| ≥ δ0 > 0 if kb < ks,

(3.3)

for every t ∈ Z. Since
∫

B2
|∇y

(
hn(ρy+bn)

)
|2 dy→ 0 as ρ → 0, we have

lim
ρ→0
{ sup

1/2≤s≤1

∫
∂B1

|hn(sρy+bn)− h̄n(ρ)|2 dσy}= 0. (3.4)

Then from the Lipschitz continuity of the sine and cosine functions and (3.4) we
have

lim
ρk→0
{ sup

1/2≤s≤2

∫
∂B1

|ωn
sρk

(y)− ω̄
n(ρk)|2 dσy}= 0. (3.5)

From (3.3) we get
|(ω̄n(ρk))| ≥C3 > 0 (3.6)

for each k. Then, from (3.5) and (3.6) we get for every s ∈ [1/2,1] and every k
sufficiently large that ∫

∂Bs

|ωn
ρk
|2 dσ ≥C4 > 0.

This implies ∫
Bρk (bn)

|ωn|2

ρ2
k

dx≥
∫

Bρk (bn)\Bρk/2(bn)

|ωn|2

ρ2
k

dx

=
∫ 1

1
2

∫
∂Bs

|ωn
ρk
|2 dσds≥ C4

4
which is a contradiction. �

Using the notation from Proposition 3.1 we have the following corollary.

Corollary 3.1. Let hn(x) = h(x)+∑m 6=n θbm(x)+ ζ (x) for h ∈ A(b). Then for 1 ≤
n≤ d

lim
ρ→0

∫
Bρ (bn)\Bρ/2(bn)

(
|∇hn|2 +

(hn−αn)
2

ρ2

)
dx = 0
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and

hn(ρy+bn)→ αn in L2(S1) as ρ → 0.

From the definition of αn then, for each φ ∈ A(b), if ks < kb and v(x) =
v(b,φ)(x) we have v(ρy+ bn)→ ±y as ρ → 0 in L2(∂B1(0),S1), giving rise to
a pure splay pattern near each defect. If kb < ks it follows that v(ρy+bn)→±iy in
L2(∂B1(0),S1), giving rise to a pure bend pattern near each defect.

4. Construction and Properties of the Renormalized Energy
Denote the integrals Jε(u;A) =

∫
A jε(u,∇u)dx and J̄ε(u;A) =

∫
A j̄ε(u,∇u)dx, with

A⊂Ω, noting that Jε(u;Ω) = Jε(u). Given any configuration b ∈ T , take a function
φ ∈ A(b) and define the function v as in the previous section. Then, for a given
ρ > 0, denoting Ωρ = Ω\∪d

n=1Bρ(bn), we have

J̄ε(v;Ωρ) = J̄(v;Ωρ) =
∫

Ωρ

j̄(v,∇v)dx

where

v = ei(φ+ζ+∑
d
n=1 θbn ) in Ωρ .

Then, we have

k
2

∫
Ωρ

|∇v|2 dx =
k
2

∫
Ωρ

(
|∇φ |2 +2∇φ · (∇ζ +

d

∑
n=1

∇θbn)+ |∇ζ +
d

∑
n=1

∇θbn |
2
)

dx.

Recall that θbn(x) is the harmonic conjugate of ln(|x− bn|), ζ (x) is the harmonic
conjugate of−∑

k
`=1 d` ln(|x−y`|) in Ωρ , and {y1, . . . ,yk} ⊂ (Ω)c. Define a function

Gb(x) = ∑
d
n=1 ln(|x− bn|)−∑

k
`=1 d` ln(|x− y`|). Hence, using integration by parts,

we obtain

k
2

∫
Ωρ

|∇v|2 dx =
k
2

∫
Ωρ

|∇φ |2 dx+
k
2

∫
∂Ω

(
(∂ν Gb)Gb−2(∂τ Gb)φ

)
dσ

− ∑
m 6=n

kπ ln(|bn−bm|)+
d

∑
n=1

k

∑
`=1

kπd` ln(|bn− y`|)+ kπd ln
(

1
ρ

)
+oρ(1).

We also have on the boundary, v(x) = ei(φ(x)+∑θbn (x)+ζ (x)) = g(x). Using integration
by parts again, we have

k
2

∫
Ωρ

|∇v|2 dx =
k
2

∫
Ωρ

|∇φ |2 dx+
k
2

∫
∂Ω

(
2Gb(g×∂τ g)− (∂ν Gb)Gb

)
dσ

− ∑
m 6=n

kπ ln(|bn−bm|)+
d

∑
n=1

k

∑
`=1

kπd` ln(|bn− y`|)+ kπd ln
(

1
ρ

)
+oρ(1).
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This implies that

J(v;Ωρ) = J̄(v;Ωρ)+ kπd

= kπd ln
(

1
ρ

)
+ kW (b)+H (b,φ ,ks,kb)+oρ(1)

(4.1)

where W (b) and H (b,h,ks,kb) are defined as in (1.6) and (1.7) respectively. Notice
that H (b,φ ,ks,kb) ≥H (b,φ ,k,k) and that kW (b)+H(b,k,k) is simply k times
the renormalized energy for the Ginzburg-Landau energy studied in [1] for the case
when Ω is simply connected. It is proved there that the latter tends to infinity as
either b→ ∂Ωd or |bn− bm| → 0. These properties can be seen to hold here by
examining the first and third terms on the right side of (1.6) respectively. Thus they
hold for our renormalized energy as well. To minimize the energy then, the vortices
must be distinct and stay within the domain Ω. Now for each configuration, we will
show that there is a function that will minimize the renormalized energy.

Proposition 4.1. Assume that ks 6= kb. Let b ∈ T be a configuration in Ωd , Then,
there exists a function hb(x) ∈ Ab such that

kW (b)+H(b,ks,kb) = min
φ∈A(b)

(kW (b)+H (b,φ ,ks,kb))

= kW (b)+H (b,hb,ks,kb).

Proof. We first point out that A(b) 6= /0. Indeed let φ ∈H1(Ω) such that v(b,φ) = g
on ∂Ω. Let {Bρ(bn); n = 1, . . . ,d} be a nonintersecting collection of closed disks
that are contained in Ω. One can always modify φ so that φ(x)=αn−∑m 6=n θbm(x)−
ζ (x) for x ∈ Bρ(bn), for each n, for some αn as defined in Proposition 3.1. The
resulting function φ ∈ A(b).

Since W (b) is independent of the particular φ ∈ A(b) we only need to mini-
mize H (b, ·,ks,kb). Let {hn} ⊂ A(b) be a minimizing sequence for H (b, ·,ks,kb).
By definition of the integral, we can subtract an integer multiple of 2π from each hn,
so that without a loss of generality hn|Γ0 = f for each n. Then Poincaré’s inequality
can be applied so that we have ‖hn‖2;Ω ≤ C(‖∇hn‖2;Ω + 1). Since {hn} is a mini-
mizing sequence for H (b, ·,ks,kb) it follows that ‖hn‖1,2;Ω ≤C0 for some constant
C0. Thus there exists a function h0 ∈H1(Ω) satisfying v(b,h0) = g on ∂Ω and such
that hnk ⇀ h0 in H1(Ω) and hnk → h0 almost everywhere in Ω. This gives

liminf
k→∞

∫
Ω

|∇hnk |
2 dx≥

∫
Ω

|∇h0|2 dx. (4.2)

This also gives eihnk (x) ⇀ eih0(x) in H1(Ω;C). Let ∏
d
n=1

x−bn
|x−bn|e

i(hnk (x)+ζ (x)) = wnk(x)

and ∏
d
n=1

x−bn
|x−bn|e

i(h0(x)+ζ (x)) = w0(x). Then we have wnk →w0 in L2(Ω,C). Let zk =

curl wnk(div wnk) if ks < kb(kb < ks). Then, we have ‖zk‖2;Ω ≤C(b). Hence, there
exists a subsequence, relabeled as zk, such that zk ⇀ z0 in L2(Ω). This implies that
z0 = curl w0(div w0) and we have

liminf
k→∞

∫
Ω

(curl wnk)
2 dx≥

∫
Ω

(curl w0)
2 dx if ks < kb,

liminf
k→∞

∫
Ω

(div wnk)
2 dx≥

∫
Ω

(div w0)
2 dx if kb < ks.

(4.3)
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Then combining (4.2) and (4.3), we get

min
h∈H1

v

(W (b)+H (b,h,ks,kb)) = liminf
k→∞

(W (b)+H (b,hnk ,ks,kb))

≥W (b)+H (b,h0,ks,kb)

giving us the result of the proof, with hb := h0. �

By the previous proposition, we can utilize the notation as in (1.5) so that there
is no dependency on the choice of the function h. Even though it will not be used in
this work, one can show that kW (b)+H(b,ks,kb) is continuous on T . This is done
in [23].

Proposition 4.2. Let h be the polar function appearing in the definition of u∗ from
Theorem A. Then h ∈ A(a).

Proof. Consider the configuration a = (a1, . . . ,ad) and the function
u∗ = ∏

d
n=1

x−an
|x−an|e

i((h(x)+ζ (x)). Let {u`} be a sequence of minimizers to Jε`
(·) for

each ε`. Then from Corollary 2.1 we get
∫

Ω
(curl u`)2 dx≤ C̃ or

∫
Ω
(div u`)2 dx≤ C̃,

where C̃ has no dependency on ε . From Proposition 2.3, u` → u∗ in L2(Ω;C) and
we have that the distributions {curl u`} ({div u`}) are uniformly bounded in L2(Ω)
. Hence, as in the proof of Proposition 4.1, we get∫

Ω

(curl u∗)2 dx≤ liminf
`→∞

∫
Ω

(curl u`)2 dx≤C0, if ks < kb,∫
Ω

(div u∗)2 dx≤ liminf
`→∞

∫
Ω

(div u`)2 dx≤C0, if kb < ks.

From the definition of each u` on the boundary, we have u∗|∂Ω = g, giving us
v(b,h) = g on ∂Ω. From Proposition 2.3, h ∈H1(Ω). Therefore, h ∈ A(a) and must
satisfy the result of Proposition 3.1. �

5. Energy Away From the Vortices
We must first analyze the following minimum problem before proving Theorem B.
Let β ∈ C, such that

β =

{±1 if ks < kb

±i if kb < ks

and recall from the proof of Proposition 2.1 the expression

Īβ (
ε

R
) = inf

u∈H1
g

{∫
BR(0)

j̄ε(u,∇u)dx
}

where
g(x) = β

x
|x|

for |x|= R.

Proposition 5.1. The function Īβ (τ)+kπ ln(τ) is a nondecreasing function of τ for
τ > 0 such that γ := lim

τ→0
{Īβ (τ)+ kπ ln(τ)}>−∞.



Analysis of G-L Type Energy 19

Proof. The argument is similar to that in [1]. It is shown within the proof of Proposi-
tion 2.1 that the expression Īβ (τ)+kπ ln(τ) is monotone nondecreasing and bounded
below. The existence of the finite one-sided limit at τ = 0 follows from these two
properties. �

Proof of Theorem B. Assume that ks 6= kb. We argue in a similar manner as in [16]
and Chapter 8 of [1]. Those works however, used the fact that the polar function
hb(x) is smooth (since it is harmonic for the case ks = kb). Here we appeal to Corol-
lary 3.1 to control hb. Let b = (b1, . . . ,bn) be a configuration in Ωd , where bn 6= bm
for m 6= n, and Ωρ = Ω\∪d

n=1Bρ(bn). For this configuration, set

wb(x) =
d

∏
n=1

x−bn

|x−bn|
ei(hb(x)+ζ (x))

where hb ∈ A(b) satisfies Proposition 4.1. Then, using (4.1) we find that,

∫
Ωρ

j̄(wb,∇wb)dx = kπd ln
( 1

ρ

)
+ kW (b)+H(b,ks,kb)− kπd +oρ(1) (5.1)

as ρ → 0. We next construct comparison functions using the configuration point b.
For 0 < ε � ρ � 1, define

ũ`(x) =


wb(x) for x ∈Ωρ

eiqn(x) x−bn

|x−bn|
for x ∈ Bρ(bn)\Bρ/2(bn)

zn(x−bn) for x ∈ Bρ/2(bn)

where zn minimizes J̄ε`
(·;Bρ/2(0)), with

zn(x−bn)|∂Bρ/2(bn) = eiαn
x−bn

|x−bn|
.

Here αn is determined from hb by way of Corollary 3.1 such that

αn =


cnπ for some cn ∈ Z if ks < kb

(2cn +1)π
2

for some cn ∈ Z if kb < ks.

Then by Proposition 5.1, we have∫
Bρ/2(0)

j̄ε(zn,∇zn)dx = kπ ln
(

ρ

2ε

)
+ γ +oε(1) (5.2)

as ε → 0 for each ρ > 0. Define h̃n(x) = hb(x)+∑m 6=n θbm(x)+ ζ (x) and qn such
that

qn(x)|∂Bρ
= h̃n(x), qn(x)|∂Bρ/2

= αn

such that qn is linear in radial directions centered at bn. From Corollary 3.1 there
exist ρ` ↓ 0 so that

lim
`→∞

∫
∂Bρ`

(bn)

(
ρ`|∇h̃n|2 +

(h̃n−αn)
2

ρ`

)
dσ = 0. (5.3)
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With this property we have that

ũ`(x) = eiqn(x) x−bn

|x−bn|
= (ei(qn(x)−αn))(eiαn

x−bn

|x−bn|
) for x ∈ Bρ`

(bn)\Bρ`/2(bn)

satisfies ∫
Bρ`
\Bρ`/2

j̄ε(ũ`,∇ũ`)dx = kπ ln(2)+oρ(1) (5.4)

uniformly in ε . Then from (5.1), (5.2), and (5.4) we have for minimizers uε that

Jε(uε) = J̄ε(uε)+ kπd ≤ J̄ε(ũ`)+ kπd

=kπd ln
(1

ε

)
+ kW (b)+H(b,ks,kb)+dγ +oρ(1)+oε(1).

Thus

limsup
ε→0

(
Jε(uε)− kπd ln

(1
ε

))
≤ kW (b)+H(b,ks,kb)+dγ. (5.5)

We next obtain an estimate from below. Let a be a limiting configuration as
in Theorem A. Using Propositions 2.4 and 4.2 we can find a sequence of radii {ρ`}
and a subsequence of minimizers {uεk,`} (that we label {uk}) so that (5.3) holds at
a, and in addition

uk→ u∗ in H1(∂Bρ`
(an)) and

1−|uk|2

εk
→ 0 in L2(∂Bρ`

(an)) as k→ ∞

for each ` and n. It follows that we can construct, in a similar fashion as before,
functions ũnk` ∈ H1(B2ρ`

(an)\Bρ`
(an);C) so that

ũnk`|∂Bρ`
(an) = uk and ũnk`|∂B2ρ`

(an) = eiαn
x−an

|x−an|
,

satisfying ∫
B2ρ`
\Bρ`

j̄εk(ũnk`,∇ũnk`)dx = kπ ln(2)+oρ(1)+oε(1).

From this and Proposition 5.1 we see that

kπ ln
(

ρ`

εk

)
+ γ ≤ Jεk(uk;Bρ`

)+ Jεk(ũnk`;B2ρ`
\Bρ`

)− kπ ln(2)+oρ(1)+oε(1)

= Jεk(uk;Bρ`
)+oρ(1)+oε(1).

We use Proposition 2.4 and (4.1) to determine the asymptotic nature for Jεk(uk;Ωρ`
).

These two estimates give

Jεk(uk)≥ kπd ln(
1
εk
)+ kW (a)+H (a,h,ks,kb)+dγ +oρ(1)+oε(1)

≥ kπd ln(
1
εk
)+ kW (a)+H(a,ks,kb)+dγ +oρ(1)+oε(1).

Choosing subsequences {ρ`},{ε`} such that ε` � ρ` → 0 as `→ ∞ allows us to
compare this to (5.5). Since b was arbitrary, we have that

kW (a)+H(a,ks,kb)≤ kW (a)+H (a,h,ks,kb)≤ kW (b)+H(b,ks,kb)
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for any configuration b ∈ T . Hence the configuration a from Proposition 2.3 min-
imizes the renormalized energy, with a ∈ T . If we set a = b, we obtain that the
function h from Proposition 2.3 minimizes the renormalized energy for the config-
uration a. Finally we see that

lim
`→∞

(
Jε`

(uε`
)− kπd ln

( 1
ε`

))
= kW (a)+H(a,ks,kb)+dγ.

�

Remark 2. To be complete, we point out that Theorem B holds in the case k = ks =
kb as well. In this case the renormalized energy is as in (1.5) and (1.6), such that
H(b,k,k) = 1

2
∫

Ω
k|∇hb|2 dx, where v(b,hb) = g on ∂Ω and hb is a harmonic func-

tion that minimizes this energy subject to this boundary condition. If Ω is multiply
connected the proof proceeds just as in [1], once one knows that a configuration a
obtained from a sequence of minimizers {u`} is in T . This follows from Proposition
2.3.
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