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1. Introduction 

We consider the vortex motion for the Ginzburg-Landau heat flow 

1 
u, = Au + ~ ( 1  - luI2)u in fl x R,, 

E 
(1.1) 

(1.2) u(x, t) = g(x) for x E 80, t > 0, 

(1.3) u(x, 0)  = u&) for x E 0. 

Here 0 is a two-dimensional, smooth, bounded domain, E is a positive parameter, 
u : R x R, - R2, g : 8 R  - R2 is smooth, and Igl(x) = l , x  E 80. Naturally we 
also assume the compatibility condition that u&) = g(x) on dfl. 

The system (l.lH1.3) can be viewed as a simplified evolutionary Ginzburg- 
Landau equation in the theory of superconductivity (141, [51, 1111, [18]). The 
same system also appears in a canonical way when one expands a large class 
of second-order dissipative systems about bifurcation points (131, [15], [19]). It 
serves, therefore, as one of the fundamental models in the study of the dynamics 
of nonequilibrium patterns ([21], [22]). 

The aim of this article is to understand the global (in time) dynamics of vortices, 
or zeros, of solutions u of (1.1)-(1.3). Our study has some interesting implications 
for the problem of “pinning the Ginzburg-Landau vortices”; see, for example, [6] 
and [16]. Its importance to the theory of superconductivity and applications are 
addressed in many earlier works ( [6] ,  [7], [lo], [141, [181). 

To understand the behavior of solutions u of ( l . lHl .3)  as t - +m, one has to 
look at steady state solutions uE, that is, the critical points of the energy functional 

1 1 
2 0  = - J [ I V U I ~  + 7 2E (1.1~ - d x .  

A complete characterization of asymptotic behavior (as E - O + )  of vortices of U, 
is given in the recent book [2]. 
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THEOREM 1.1. Let R,g be as above, and let { u ~ , , }  be a sequence of steady 
state solutions of (1 . l)-( 1.2) (with E = E,,). Then there is a subsequence {u,;!} such 
that u,;,(x) - u* (x) in C:g ( t / {a l , .  . . , ak}) with k I k(R, g)  where u* (x) is given 
bY 

c!=l dj = d deg(g, dR),u* (i)i2 = g, and Ah = 0 in R. Here we assume d 2 0, 
and in the product we naturally identify a two-vector with a complex number. 

r f ;  in addition, the {u,;,} are minimizers of (1.4), then, in the above formula for 
u * , k  = dydj = 1 for j = 1,. . . ,d. Moreovel; the point a = (a , ,  . . .,ad) E Rd is a 
global minimum point of the renormalized energy W J b )  dejned in f i d  where for 
b = @I,.  . . , bd) E Dd, 

(1.6) d 

= -r R(b;), 
j =  I 

@ is a solution of 

(1.7) 

d 

A@ = 27rc6h ,  
;= I 

(gr is the tangential derivative of g along dR), 

in a, 

80, 

and R(x) is given by 

I X  - bjl. 

Remark 1.2. The above theorem was shown in [2] under the additional as- 
sumption that R is star-shaped. This additional assumption was later removed in 
[16] and [251. We point out that the proof of theorem A in 1171 also leads to a 
proof of the latter fact. 

The dynamics of the vortices in the limit E + 0 can be considered within the 
framework of a general program initiated by J. Neu [ 181 and later extended and 
improved by many others ([7], [20], [22]). They formally used the method of 
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matched asymptotic expansions to derive equations of motion for the vortices. To 
leading order in E (or &), the equations are of the form: 

The constants m; are called the mobilities of the vortices. One of the key facts 
that has been derived is that m; - I log E I .  In fact, it is derived in [18] and [7] that 

I d  
E d t  

log - -a(t) = -grad W,&) 

where a(r) = (a,(?),  . . . ,a&)),a;(t), i = 1,. . . , d ,  are vortices. 
It is a challenging problem to give a rigorous mathematical proof of (1.9). Since 

the right-hand side of (1.9) is generically bounded, it follows that the vortices 
move slowly; that is, it takes a period of time that is O(log i) for a vortex to move 
an appreciable distance. Under certain conditions on the initial data ug and the 
assumption that 0 is convex, the following result was proved in [22]: 

THEOREM 1.3. Let uJx, t )  be a solution of ( 1,l)H 1.3). Assume that at each 
time t > 0 there exists exactly one zero of uE. denoted by qE( t ) ,  with deg(u,, dB, = 
(qE( t ) )  for all positive r < dist(q,(t), 80). Let xu be any poinf in 01{0} and denote 
by T ,  ?he infinimum o f f h e  set {f : qF(t )  = XO}, assuming this set to be nonempty. 
Where ~ " ( 0 )  = 0, then 

liminf T" > 0 .  
E - 0  )logEI 

The result of Theorem 1.3 shows that vortices can only move in no less than 
log :-scale time. It is, however, almost impossible to verify the assumption of this 
theorem in general. Indeed, in the same paper the authors exhibited examples in 
which the number of vortices increases in the course of the evolution. In Section 
3 of this paper, we show, under a suitable condition on the initial data 4, the 
solution u,(x, t )  will not create any additional vortices whenever 0 < t 5 o(l0g i). 

The main results of this paper can be roughly described as follows. Let u,(x, r) 
be the solution of (1.1)-(1.3), and suppose the initial data satisfy some natural 
conditions (see Assumptions 3.1 and 3.2 in Section 3); then, in any finite time 
T, we show the vortices of u,(..t),O 5 f 5 T ,  remain roughly the same as the 
initial data, and the phase function Of u,(.. t )  satisfies the standard heat equation 
(see Theorem 3.3) whenever E is sufficiently small. 

Next, we consider the evolution equations of the form 

(1.10) 
l a  1 
- -u, = A M ,  + 7 U ,  ( 1  - 1 ~ , 1 * )  x, at  E- 
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in R X Iw, and u, satisfies (1.2) and (1.3). We show (see Theorem 3.7) that as 
E - 0, u, converges to 

I-J tl s e i h ( I )  

j =  I 

in Li,(n X R,) whenever 

A, l i m 7  = 0 and A, - 03 as E - 0.  
z-0  log ; 

Here bl, . . . , b,, are d distinct points in R. They are vortices for the initial data ug 

(see Assumptions 3.1 and 3.2) where Ah(x) = 0 in R and h(x) = hdx) on dS1 so 
that 

The case that A,/log f - 03 as E - 0 is studied in Section 4. Our main result 
there is Theorem 4.5, which states that, for any sequence of E, 1 0, there is a 
subsequence of { ue,, (x ,  t)} that converges in some generalized sense. Moreover, 
for a.e., t > 0, and any w-limits of {u , , ( . ,  t)} are functions of the form 

(1 x - a .  n I &,(x) 

,=I Ix-ajI 

with the property that Ah,, = 0 in R,h,, = hg on dR, and a = (a1 ,..., a d )  are 
critical points of WJ.). 

The proofs of these results are based on some basic facts concerning the func- 
tion class S,(A,K) (see Definition 2.3). Theorem 2.4, Theorem 3.3, and Lemma 
4.1 (see also (4.5)) are each clearly of interest. They show that the function class 
S,(A, K )  possesses properties similar to those of functions U ,  that minimize the 
energy (1.4) and such that U ,  = g on 8 R  (cf. [2]). 

As can be seen from the above discussion, the case h, = log a is obviously 
most interesting for the motions of vortices. Though we are unable to show in 
this paper that the precise dynamical law (1.9) is valid, we can nevertheless show 
that (cf. Theorem 5.1) vortices move continuously in this time scale. (See the 
remark following this paper.) Moreover, vortices have to move at positive speeds 
whenever they are away from the critical point set of the renormalized energy. 
These statements show, in particular, that the mobilities of vortices have to be 

As our proofs are mostly based on a careful investigation into the class of 
functions SJA, K), the key method involved is naturally energy comparison. It is 
clear that, when E - 0, we will lose control on both continuity in time and conti- 
nuity in space variables for the solutions u,(x, t )  of (1.1 )-( 1.3). Thus there is little 
hope that the standard elliptic or parabolic theory will have many implementations 
here. 

1 = log ;. 
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2. Preliminaries 

2.1. Maps with Prescribed Vortices 

Let b,, b 2 , .  . . ,bd be d distinct points in R where d = deg(g,dR) > 0. By 
lemma VIII.1 and its proof in [2], there is some po depending only on b = 
(bl . . . , bd) and R such that for every 0 < p S po and every E > 0, one may 
find some w,(x) E c'(R) with w, = g on dR and 

Moreover, IVw,(x)l S C / E ,  x E a, and 

On the other hand, lemma VIII.2 of [2] asserts that 

whenever E 5 ~ ( p ) .  
In inequalities (2.1) and (2.3), the quantity I (E,P) is defined by 

2 where e,(u) = f [ IVuI2 + & ( (uI2 - 1) 1. Maps that satisfy (2.1) and (2.2) will 
provide the particular class of initial data for our discussion below. 

LEMMA 2.1. Let u be a minimizer of the functional 

in the unit disc B with u = g on dB. Suppose that 

for a constant K .  Then, for all suficiently small E > 0 (depending only on K )  we 
have 

E,(u) S C ( K )  
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whenever deg(g, dB) = 0, and 

if deg(g, dB) = d # 0 

Proof See lemma 1 of [17]. 

LEMMA 2.2. 7Jsin.q the hypothesis in Lemma 2.1, suppose deg(g,dB) = 0. 
Then lu(x)l 2 i in B whenever 0 < E d EK for some E K .  In general, if v E H'(B) 
with v = g on dB and IVv(x)l 4 C / E ,  then 

E,(v) 2 min {E,(u) : UI i )R = g }  + C ~ ( K )  

for  some Co(K) > 0 provided that lv(0)I 5 f. 

Proof See proof of lemma 2 in [17]. 

DEFINITION 2.3. Let R,g be as in (1.1)-(1.3). We say a map u : R - R2 
belongs to the class S,(A, K) if 

(i) u E H'(R), u = g on dR, and lu(x)I 5 1 in R; 
(ii) if lu(x0)l d 2 and xg E R, then lu(x)l 5 

(iii) E,(u) 5 .rrd log f + K. 

I whenever x E R and Ix-xoI 5 AE; 

It is not hard to check whether u,(x, t )  is a solution of (1.1)-(1.3). Then, for any 
t > 0, u,(.,t) E S,(A,K)  provided that E,(uo) 4 rd log  f + K and IVuo(x)(x)l 5 
C O / E  where A may depend on C O , ~ ,  and R. We note that A depends only on g and 
R whenever t E z2. Therefore, it is useful to get some general knowledge about 
those maps in SJA, K). 

THEOREM 2.4. There are two positive numbers EO and crg depending only on 
A, K ,  g, and R such that, for  any 0 < E 4 EO,  u E SJA, K ) ,  there are N ,  disjoint 
balls B, of radius E ~ J ,  j = 1, . . . , N,, with the following properties: 

(i) CYO 5 aJ d 1 for  j = 1 ,..., N, and N ,  4 N . ( A , K ) .  
(ii) The set { x  E R : lu(x)l 5 i} is contained in R n (u,Ll Bj). 

(iii) The estimates E ~ J  Sr)(R,. ,62) e,(u) 5 c(ao, A, K ) ,  j = 1,. . . , N,, are valid. In 
particulal; the degrees d ,  = deg(u, a(BJ n 0)) are well-deJined. 

(iv) There are exactly d balls, say B I  , . . . , Bd, such that the corresponding degrees 
d ,  are not zero. If we let XI , .  . . , x d  be the centers of balls B I ,  . . . , B,!, then 
min{ Ix, - x, I, dist(x,, an) : i # j ,  i, j = 1,. . . , d }  2 6(A, K )  > 0. Moreover, 
each dJ equals 1 for j = 1,. . . , d. 

the resulting 
domain is of diameter 1 and is uniformly Lipschitz (independently of E and j ) .  

N 

(v) IfB, n R # 0, then i fBJ n R is scaled by a factor of size = 
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Proof Step 1. Starting with a map u E S, (A ,K) ,  we are going to construct 
a finite sequence of maps such that each map is a simple modification of the 
preceding one and the final map v has the following properties: 
(PI) v E S,(A,K);  
(P2) the set { x  E R : Iv(x)I 5 4) is contained in d disjoint balls D, centered at y, 

and of radius spi for j = 1,. . . ,d, where p, 2 P ( A , K )  > 0 for j = 1,. . . ,d. 
(P3) the balls D,, j = 1,. . . d,  satisfy Jjn, eJV) 5 c(p, A,K), min{ly, - y,l, 

dist(y,,aR) : i # j ,  i , j  = 1,. . . , d }  2 6(A,K), and d, = deg(V,dD,) = 1 for 
j = 1, ..., d. 

For this purpose we assume that E is so small that K S i log: and thus 
E,(u) 5 7r(d + ?)log ;. Set a = 2-d-k11 where ko is chosen so that 2-’Q+’ I &. 
As in [25], for any x E R there is /3 E [a, 2a] such that 

I I 

In particular, lu(x)l 2 for x E d(B,o(x) f l  R), and the degree (u, d(B,o(x) n R)) is 
well-defined whenever E is sufficiently small (depending only on K, d,  g, and R). 

Let yo be a point in the set { x  E R : lu(x)l S i}. Then we choose a ball D of 
radius sp for some p E [a, 2a] and centered at yo so that (2.4) is valid (with yo in 
place of x) .  If deg(u, d(D n R)) = 0, then we replace u inside D n R by U, where 
U minimizes the energy &,,, e,(v)dx with ii = u on d ( D  n 0). It is not hard to 
see that d ( D  n R) is a Lipschitz domain for which we may apply Lemma 2.2 
so that lU(x)l 2 in D f l  R. In this way we obtain a new map u’(x) that equals is 
on D n 0, that coincides with u on RID such that 

and that still possesses the property (ii) in the definition for the class S,?(A,K) .  
Indeed, since Iu(x)I 2 on d(D fl R), for any point xo E RID with lu(xo)l S i, 
the ball { x  : Ix - xol 5 As} will not intersect a(D fl R). In other words, u’(x)  E 
S,(A,K).  We then apply the same modification procedure to u’(x) as we did to 
u(x) above to obtain the second new map u”(x) ,  and so on. After finitely many 
repetitions of this procedure, say N I  times, we arrive at a new map ul(x), a point 
y1 E {x  E R : lul(x)l 5 i}, and a ball DI centered at y~ of radius spl for which 
the corresponding estimate (2.4) is valid. Moreover, deg(u1, d(Dl n 0)) = dl # 0. 

At this stage we will keep the ball D I  and let R I  = R(D1. We apply the same 
arguments as above for u on R to ul on R I  with p E [2a,&]. The reason we 
change the range of values for p is as follows: For any x E R I ,  let D be a ball 
centered at x and of radius EP for some p E [2a,4a];  then D n R I  is a uniformly 
Lipschitz domain after normalization (its Lipschitz character is independent of 
P E [2a, 4a], small positive E,  and x E RI) .  
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As in the previous stage, we modify u~ on R I  a total of N2 times to find 
another map u2, a point y2 E {x E R I  : lu2(x)l 5 i}, and a ball D2 of radius 
&02. P2 E [2a ,4a ] ,  and centered at y2 such that d e g h d ( D 2  n RI))  = d2 # 0. 
We keep the ball D2, let R2 = R I  ID2, then apply the same procedure to u2 on 0 2  

with P E [4a, gal, and so on. 
We claim the above procedure has to stop after d iterations of modifying the 

maps. Indeed, if we find d + 1 balls, d , ,  . . . , dd+ 1 ,  then by Lemma 2.1 (which may 
apply to all domains Dj  n Rj- I ,  j = 1,. . . , d + 1, Ro = 0, since all these domains 
become uniformly Lipschitz after a proper scaling), we have, for j = 1 , 2 , .  . . , d +  1, 
that 

Therefore, 

1 
E 71 d +  - log- - c ( a , d ) .  ( 3 & 

This result contradicts the fact that u E S,(X, K )  whenever E is sufficiently small. 
In summary, after finitely many modifications we obtain a new map v. More- 

over, v satisfies both (PI) and (P2). From our constructions, it suffices to verify 
(P3). Since c;=, d j  = d, the fact d j  = 1 follows from (2.5). To show that the 
centers of the balls Dj  are distinct and lie strictly inside R, we consider a new 
m a p ? s u c h C = v o n D j n R ,  j =  1, ..., d ,  andvminimizes 

with V = v on d(R I U$ I Dj). Then, the arguments in the proof of theorem A of 
[17] show that 

(2.6) 
1 

P 
E,(g 2 7rd log - + dl(&,  p )  + O(p) + W J g ,  

whenever E is suitably small and where p 2 p ( ~ ) ,  7 = (yl,. . . , y d ) .  and y = 
(yl , .  . . , yd) satisfy Iy - y(  5 p 2  since W g ( g  - +oo whenever two points yi and 
yj( i  # j )  coalesce or one of the point 7; tends to 80. Thus we conclude that 
(P3) is also true. Note that the value (for all sufficiently small E )  of min{ly; - 
yjl, dist(yi, an) : i # j ,  i, j = 1 , .  . . , d }  is bounded below by a positive constant 
depending only on K , g ,  and R. 
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Step 2. We want to show that the total number of modifications N = xyL; N ,  
that take place in constructing the map v with properties (Pl), (P2), and (P3) is uni- 
formly bounded by a constant depending only on A, K , g ,  and 0. Here Nd+l is the 
number of modifications that have to be made to cover the set { x  E R 1 u;'=, 0, : 
IUd(x)l 5 i} so that the resulting map v has the property (P2). 

To show the above fact, we use (2.3) to obtain first that 

E,(u) - E,(v) 5 K + C(g, Q ) .  

On the other hand, all maps in this modification procedure are in class S,(X, K). We 
employ the proof of Lemma 2.2 (cf. [17], lemma 2) to obtain that each modification 
decreases the total energy of the map by at least $ whenever e is small enough 
(depending only on A, K , g ,  and 0). Thus N . $ 5 K + C(g, R), that is, 

N 5 N(X, K) 

Therefore, the values of the maps v and u can be different only on a union of 
at most N balls of sizes 5 ea. In other words, the set {x  E R : lu(x)l 5 i} is 
contained in a union of at most N + d balls of sizes 5 en. 

Step 3. We can now complete the proof of Theorem 2.4. Since the set { x  E 
Q : Iu(x)I 5 i} is contained in a union of at most N + d balls of size 5 en, we 
want to employ the grouping and induction argument as in [25] and theorem 2.8 
in [12] to these at most N + d balls of size 5 8. As a result, we want to find 
N ,  balls B, of radius &'I, J = 1,. . . , N , ,  with the following properties whenever 
& d eo: 
( I ) a , ~ [ a o , a ] f o r j =  1 ,..., N , a n d N , S N + d S N , ( X , K ) .  H e r e a o i s a  

positive constant that may depend on N * . 
(11) The set {x  E Q : Iu(x)I 5 i} is contained in R n uy:, E,, and the ball 

E- 'J /~B,  (scale B, by a factor E - ' I / ~  about its center) are pairwise disjoint for 
j =  1,2 ,..., N , .  

To prove properties (I) and (10, we need the following: 

LEMMA 2.5. Let B I ,  B2,. . . , BN be N balls in R2 with radii not larger than ea 
for some CY E (0, i) and for J = 1,. . . , N. Then there are a positive number a. 
(depending only on a and N) and balls E, of radius E'I for j = 1,. . . , N ,  s N 
such that properties (I) and (11) are valid provided that E is suflciently small. 

Proof: Let A = uyz1 B,. We are going to prove this lemma on covering by 
induction on the number of connected components of A. If A is connected, then 
we simply take El = and a ball 81 of radius E" 2 2Ne" (this inequality will 
be valid whenever E is suitably small) such that A C El. The conclusion of the 
lemma follows automatically. 
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Suppose that the conclusions of Lemma 2.5 are true whenever (the number of 
connected components of A) 5 k 5 N - 1. Moreover, these 5,’s satisfy Z, 2 
for each j .  We want to show that Lemma 2.5 is true when the number of the 
connected components of A is k + 1 5 N, and that each E, in the lemma can be 
chosen to be not less than + whenever E is small enough. 

For this purpose, we let A l ,  . . . , Ak+ I be connected components of A. Without 
loss of generality, we may assume that the diameter of A is larger than 3(k+ 1)~m, 
for otherwise we may simply choose a ball B of radius 5 E” that covers A 
entirely (whenever E is small enough), and then the conclusion of the covering 
lemma is obvious. 

Now we let x’,x’’ E A be such that Ix’ -x”( = diam A 2 3(k + I)&’”+’. We may 
find a po E (0 ,3(k  + 1 ) e V )  such that the boundary dB,(x’) of the ball B h ‘ )  will 
not intersect any of the A,’s for j = 1,. . . , k + 1 and for any r E [PO - &‘”+‘,PO + 
&‘”+‘I. Then it is obvious that A n  B,,(x’) = A’, and A” = A - A’ contains some of 
each A1 , . . . , Ak+ I .  We may apply the induction step to both A‘ and A” to conclude 
that A = A’ U A” can be covered by balls B, of radius &‘I, Z, 2 $. Now since 

aist(A’, dBpl,(x’)) 2 & + + I  , and since dist(A”, dB,,(x‘) 2 E + + ’  , the conclusions of 
the covering lemma follow. This completes the induction argument. 

Now we can apply Fubini’s theorem to find balls B, (having the same center 
as B,) of radius a, E [z, /~,cu,] ,  such that (i), (ii), and (iii) of Theorem 2.4 are 
valid. Parts (iv) and (v) follow from the same proof as in Step 1. 

z<, 

2” 

7.u 

zu 

2u 

2“ - 2” - 

COROLLARY 2.6. Let u E S,(h, K )  and Bj ,  j = 1,. . . , N E ,  0 < E 5 SO, be as 
in Theorem 2.4. Suppose that T, is the center of Bj and that deg(u,dB,) = 1 for 
j = 1,. . . , d.  Then N ,  = d whenever 

1 
E,(u)  5 r d  log - + W,(X) + co 

& 

where co = d y  + $, and y is the value deJined in theorem IX.3 of [ 2 ] .  

Proof Suppose N, > d .  Then we replace values of u in B,, j = d +  1,. . . , N , ,  
by its corresponding values of minimizers of the energy functional on B, (with 
the Dirichlet boundary condition given by u). The resulting map v has the similar 
property (2.6) as for ?. 

+ d y  + o(1) as E - 0’ whenever 
p 2 p ( ~ ) .  By choosing p small, we have 

By theorem IV.3 of [2] ,  I (&,  p)  = r d  log 

1 
E,(v) B r d  log - + rd + W,(E) + ~ ( l )  . 

& 

Here o(1) is a quantity that goes to zero when E - 0’. Since E,(u) 2 E,(v)  + $ 
(see Step 2),  we obtain a contradiction to the assumption on the boundedness of 
E,(u). 
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COROLLARY 2.7. Let u E S,(h, K )  be as in Corollary 2.6 and 

1 
E,(u) S xd log - + d y  + W,(F) + co . 

& 

Then 

where C is a constant depending on X and K and where RE = RI U$ I B j  

Proof By Corollary 2.6, Iu(x)I 2 on Re. By Lemma 2.1 

1 
e,(u)dx L C x log -(I  - a,) - c .  

j =  I & 

d 

On the other hand, by Theorem 2.7(iv) and proposition 3.4 of [26] ,  we have 

Therefore, as u E SJX, K), we have 

$ l $ ( l  - lu12)dx 5 const 

where the constant depends only on A, K, g, and R. 

3. The Lower Bound of the Mobilities 

Let us consider first the finite time behavior of solutions u&(x, r )  of (1.1)-(1.3). 
The initial data uo are assumed to satisfy the following: 

ASSUMFTION 3.1. 
(i) 4 is smooth with luo(x)I 5 1 in 0; 

(ii) E,(uo) 5 ndlog f + K1 for  a constant K I ;  and 
(iii) Sn p2(x)ee(u& 5 K Z  for a constant K2 where p(x)  = dist(x, {bl, .  . . , bd}), 

and bl , . . . , bd are d distinct points in 0. 

Under Assumption 3.1 and our hypothesis on g and R, the global existence of 
the unique smooth solution uc(x, t )  of ( l . lH1.3)  can be shown by a rather standard 
method (cf. [l]). Moreover, we have 
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and thus 

By using a scaling argument and usual parabolic estimates, it is also easy to see 
that 

(3.2) 

for a constant c* depending only on g and R and for all t 2 e2. The estimate 
(3.2) will be also true for 0 < t < E* provided that ui (x)  =  EX) is such that 

(3.3) 

for some constants (Y and K 3 .  In this case, the constant c,. in (3.2) will, of course, 
also depend on K3 and a for 0 < t 5 E ~ .  

(3.1) and (3.2) imply that u,(x, r) E S,(A, K )  for constant A. Also, by (2.31, we 
have 

1 
E,(u,(*, t ) )  2 r d  log - - CI , 

& 

and hence 

(3.4) 

Next. we calculate 

Here we have used the fact that IVp(x)I 5 1 in a. Therefore, 

(3.6) 

For any T E (0, m) and any 6 E (0,60) where 

260 = min (bi - b,(,dist(bi,dR) : i # j ,  i, j = 1,. . . , d }  , { 
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we let Rb = R\ u;=l Ba(bj) and Q ~ , J  = R6 X [O, TI. From (3.4) and (3.61, we have 
u, E H ’ ( Q ~ , J )  with 

To study the asymptotic behavior of solutions u, of ( l . l H l . 3 )  as E - 0+, we 
need to make the following additional assumption on ~0 (which, in general, may 
depend on E) :  

ASSUMPTION 3.2. The initial data ui (x )  converge to 

x - b j  . 

j =  I 

as E - O+ where h&) is afinction in H’(R). 

Now, for any sequence of E, 1 0, there is a subsequence (still denoted by E ~ )  

so that uEI,(x, t )  - UO(X,  t )  weakly in H;,(D\{bl,. . . , b d }  X R+) and strongly in 
Lk(fi x R,). The latter is because luE(x,t)l  S 1. Moreover, IwJx,t) /  = 1 are a.e. 
in R x R,. 

Since u, A $uE = div(u, A Vu,) in R X R+, we deduce that (via l u ~ l ( x ,  t )  = 1 
a.e.) 

Since the images of h(x ,  t )  lie in the unit circle, the function uO(x, t) is smooth 
in D\{bl,. . . , b d }  X R+ (cf. [171). Moreover, by (3.4) and (3.7), we can deduce 
that, for any t > 0,O < 6 5 60, the degrees deg(uo(., t) ,dB,(b,)) , j  = 1,. . . , d ,  are 
well-defined and all equal to 1 by Assumption 3.2. Therefore, we may write 

(3.9) 

It is obvious that 

= Ah(x , t )  in R\{bl,. . . , b d }  x R, , 
h ( x , t )  = h d x )  on dR x R, , (3.10) 



336 F. H. LIN 

At this stage, we do not know if ho(x, t )  satisfies the heat equation in R X R,. We 
also do not know if such hO(x,t) is determined by the limit of the whole family 
u,(x, t )  instead of a special subsequence {u,,#(x, t )} .  

THEOREM 3.3. The function h&, t )  in (3.10) satisfies 

and C depends only on g, R, and K = max(KI,KZ,K3). In particulal; ho(x,t) 
satisfies the heat equation in R x R,. Consequently, we have 

when E - 0. 

Proof Let us consider a function u E S,(X, k ) ,  and let B I ,  . . . , BN, be balls 
given in Theorem 2.4. Let x:, . . . , x i  be centers of B I ,  . . . , B d ,  respectively; then 

x-xi" N, 
(3.1 1) U ( X )  = n ~ eih+(') . p,(x) for all x E R\ U = R, 

j = l  Ix-xi"I j =  I 

where hJx )  is a well-defined function, single-valued in RE, and 

1 2 5 p,(x) s 1, x E 0,. 

Such h, is uniquely determined if h,(xo) E [ 0 , 2 ~ )  for some given xo E 80. We 
note that (3.1 1) is true because 

deg(u, dBj )  = 0 for j = d + 1,. . . , N ,  . 

We have, on the one hand, 

On the other hand, 
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where 0, is a multivalued-harmonic function on 0, so that 

Since lVO,I(x) 5 for x E 52,, we have 

Note 1y < (see Step 1 of the proof to Theorem 2.4). Since 

we have 

is bounded by a constant. We calculate 

- 80 Here h, = f o ~ ,  h,. Note we have used the facts that AjB, $ = 0 and Ih, - hEl 5 
C ( A , K )  on each dB,, j = 1,. . . , N , .  

We then apply the above arguments to each u,(x, t) E S,(X, K), t > 0. From 
(3.71, we see x; - b, as E - 0 for j = 1 , .  . . , d .  Since, for a.e. t , ~ , ~ ( x , t )  - 
H;=, ~ e i M ~ + ~ )  , we see h&, t) is a weak limit of h, , (x ,  t )  in H’(52). Here to avoid 
the trivial ambiguity, we also assume hobo) E (0,27r) for the given xo E 852. Thus, 
h2 (Vho(x,t)(* dx 5 C(X,K) for all t > 0. From the latter fact one easily shows 



338 F. H. LIN 

that hdx, t )  satisfies the heat equation in 52 X R+. The conclusion of Theorem 3.3 
follows. 

Remark 3.4. Since 

in Lk(2 x R+) and weakly in H;oc(nl{bI,. . . , b,,} x R,), we see that 

COROLLARY 3.5. Suppose the initial data ug in (1.3) satisjes Assumptions 3.1 
and 3.2 with K I  5 W,(b) + cg where b = (bl, . . . , b,,) and cg is as dejned in 
Corollary 2.6. Then, for any T > 0, the sets G(t) = {x  E R : Iu,(x, t)l 5 i}, t E 
(0, TI, converge unifarmly in t to {bl , . . . , b,,} in the Hausdorf distance as E - 0. 

Proof The proof is an easy consequence of Corollary 2.6, the estimate (3.7), 
and Lemma 2.1. 

Remark 3.6. Corollary 3.5 shows that with some suitable initial data, there 
are no new essential vortices created in a finite time outside any neighborhood 
of the initial vortices whenever E is sufficient small. (Compare with the result of 
[22], section 4). 

Let us now consider the following scaled equations: 

Here we assume that 

A& lim A, = 00 and lim- = 0 
E - 0  8-0 log& 

(3.13) 

THEOREM 3.7. Suppose the initial data satis-  Assumptions 3.1 and 3.2. Then 
as E - 0, solutions uE(x, t )  of (3.12) verify: 
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Proof As for (3.1), one has 

(3.14) 
1 

4 E,  (4) 4 ndlog- + K I .  
E 

Also, as for (3 .3 ,  one gets 

Therefore, 

Note also that u,(., t )  E S,(A,K) for any t > 0 whenever E is sufficiently small. 
We claim the following: For any t > 0 and any sequences of E, 1 0, there is a 
subsequence of uEn(x, t )  that we will still denote by u&,, such that 

inL2(n) and weakly in f&&=il{a1 , . . . , a d } )  where al ,  ..., ad  are d distinct points 
in R. Moreover, h,(x) E H'(R). This claim shall be proved in the next section 
(see Lemma 4.1). 

Given the estimate (3.16) and the claim above, we get aj = b, for j = 1,. . . , d. 
Since 

we see that there is a subsequence (still denoted by E,) such that 

This, together with the claim above, yields h,(x) = h(x), Ah(x) = 0 (cf. (3.8)). 
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To summarize, we have shown that, for any sequence of E, 1 0, there is a 
subsequence of {u,} such that, for almost all t > 0, 

as E, 1 0, for any T. The latter follows from Egorov's theorem and the fact that 

Since E, I 0 is arbitrary, the conclusion of Theorem 3.7 follows. 

Remurk 3.8. Theorem 3.7 shows that the mobilities of vortices cannot be 
much smaller than a multiple of log f . 

Remark 3.9. If we replace A, in (3.12) by 61og for a small positive number 
6, then it follows from the proof of Theorem 3.7 that for any E, I 0, there is a 
subsequence of u,,, (x, t )  such that 

1 
( t )  - 0 for a.e. t .  

Moreover, for any t > 0, there is a subsequence of u,,#(x,t) that converges to 
ny=, a eihoCr) in L2(n)  and weakly in H;,(~{al, .  . . , a d } )  for some a E Rd with 
Ib - a1 S ~(6, K )  where ~(6, K )  - 0 when 6 - 0. Finally, for a.e. t, Ah,(x) = 0 in 
R. 

4. The Upper Bound on the Mobilities 

For a steady state solution u,(x) of (l.lk(1.2) with E,(u,) 5 milog: + K, 
chapter X in [2] implies the following: For any sequence of E, 1 0, there is a 
subsequence of {u,,,} that converges to a map of the form 

for some d distinct points a l ,  . . . , a d  in R. Moreover, Ah = 0 in R, and the point 
a = (a , ,  . . . , a d )  is a critical point of the renormalized energy W,(.) in ad. If in 
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addition u,(x) minimizes (1.4), then by a theorem of [ll, we can conclude that for 
a solution u,(x,t) of ( l . lH l .3 )  with the initial data ug satisfying Assumption 3.1, 
there is a time T(c, ug, g, 0) such that UJX, t )  has exactly d distinct zeros of degree 
1 whenever t 2 T(E,  ug,g, a). Moreover, if a#), . . . , a:(t) are zeros of u,(x, t ) ,  
then all a;(t) E C'(T, 03) and lim,-x a,"(t) = a/" exists for j = 1,. . . , d .  

The aim of this section is to establish various facts similar to the above-stated 
theorem of [ l ]  for all times t L T, where T ,  is chosen so that 

(4.1) 

For this reason, we consider the following 

r, = AM, + zu,(I - 1u,I2) in R x R, 
u,(x,t) = g(x) on dR 

T ,  
c-0  log ; 
l i m y  = M.  

I 

{ " )  U , ( X , O )  = U W  

(4.2) 

where T, satisfies (4.1) and where u[ satisfies Assumptions 3.1 and 3.2. 

LEMMA 4.1. (GENERAL CONVERGENCE THEOREM) Let u, E S,(X,K). Then, 
for any sequence of E,, 1 0, there is a subsequence of {u,,,} that converges to a 
map of form 

x - b j  . 
in L2(s2) and weakly in H ; , ( n l { b ~ , .  . . , 

where bl, . . . , bd are d distinct points in R and h(x) E H ' ( 0 ) .  

Proof For u, E S,(A, K), we let B,, j = 1,. . . , N,, be balls in Theorem 2.4. 
We replace u, on each B, by c&, which minimizes s,, e,(V)dx with V = u, on dB, 
f o r j = d + l ,  ..., N,.Thus,inparticular,(U,I B ~ o n e a c h B , ,  j = d + l ,  ..., N,. 
We denote the resulting map e,. 

Let 6 E ( E ~ I ' ,  6(X, K ) )  where (YO, 6(h, K) are given in Theorem 2.4, and suppose 
that aB&,) does not intersect with U J L d + [  B,. Except for a set of 6 E 
(cat', 6(h, K ) )  whose measure 5 N * (A, K ) E a " ,  the latter assumption is valid. 

- 3  

N 

For such a 6. we have 

(4.3) 

where 
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Here the first inequality is true because 

and '1 IVfi,I2dx e,(U,)dx 2 - 
&(.TI  )\Bf 2 Ba(x,)lB, 

6 
EUJ 

- 

27rdlog--C(X,K) f o r j =  1,2 ,..., d ;  

s 
see I [26], where, in the second inequality of (4.3), we have used Lemma 2.1 for 
U ,  on each B,, d + 1 5 j 5 N, S N . ( X , K ) .  

Since u, E S,(A,K) ,  we deduce from (4.3) that 

(4.4) 

where Ob = O\ u$, Bb(xj ) .  
Now, for a sequence of E, 1 0, we may assume, without loss of generality, 

that x j  - bj as E, 1 0. Note that xi may also depend on E .  We may also 
assume, by taking a subsequence if necessary, that u , , ( x )  - u * ( x )  weakly in 
H;,(fi\{bl,. . . , b d } )  and strongly in L2( f l ) .  The conclusion that 

follows from the proof of Theorem 3.3. 

Remark 4.2. The claim made in the proof of Theorem 3.7 follows from 
Lemma 4.1. 

N Remark 4.3. Let R, = Cl\ Ujcl B j ;  then 

In fact, if we choose a suitable 6 2 f6(c,K) in the proof of Lemma 4.1, then one 
has 
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and 

(again using Lemma 2.1) 

The estimate (4.5) then follows. 

find a subsequence of {u&,,(x, t)}, still denoted by {uE,,}, such that 
Let us now consider (4.2). Taking an arbitrary sequence {en},&, 1 0, we may 

as a function of t when En - 0, and 

and T,"/log $ - 00 as En - 0. 

4.1. Class S(t) 

DERNKION 4.4. For the given sequence {uen(x, t ) }  and for any r, we introduce 
a function class S(r) that, in principle, may also depend on the choices of { E ~ } .  

we say a function V ( X )  of form a e i h t ( 1 )  belongs to s(t) if there is 
a subsequence of { U n ( X ) } ,  U n ( X )  = uEn(x,f) ,  that converges to V(x)  in L2(f l )  and 
weakly in HL(il\{al,. . . , a d } ) .  

By Theorem 2.4, the proof of Theorem 3.3, and Lemma 4.1, we conclude that 

min{lai - a,I,dist(a;,aR) : i # j ,  i , j  = 1 ,..., d }  2 6(h ,K)  > 0 
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and that 

for all V E S ( t ) .  
Moreover, for a.e. t ,  from Theorem 3.7 we have Ah,(x) = 0 for all V E S ( t ) .  

We want to show next that, for a.e. t and all V E S ( t ) ,  the corresponding a = 
( a , ,  . . . , a d )  is a critical point of W,(.)  in ad. To do so, we let {u,} be the sequence 
of {u , , (x ,  t ) }  with t satisfying (ii) and {u,} converging to V E S ( t ) .  

Multiplying AM, + $u,(l - Iu, 1 2 )  by 2 and integrating over B ~ ( a j )  for some 
small, suitable R and a given a j ,  we find 

Ilha(x>llHyrl, C(X?K)  

where o(1) is a quantity that goes to zero as n - m. This follows from the fact 
that (ii) is valid for t. 

As n - 00 and for a suitable R E (0, S(X, K ) ) ,  we claim the following is true: 

(4.7a) 

and 

u, - V strongly in H'(BBR) 

(4.7b) 

for a subsequence of n - 00. 

Let us assume (4.7) for the moment and proceed with our proof that a is 
a critical point of w,(.). Let eiH(I) = - x-uJ and write V(x) as ei(H(x)+H(x)); then 

Ix--(l, I ' 
AH(x) = 0 in B b ( c , ~ ) ( ~ j ) .  Because of (4.6) and (4.7), we have 

(4.8) 

A direct calculation (see pp. 74-75 in [2]) implies 

This and the fact that AH = 0 in BR implies VH(0) = 0. Therefore, VW,(a) = 0 
by Theorem VIII.3 in [2]. 

4.2. Proof of (4.7) 

Since u, E S&K) and u,(x) converges to 
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we deduce from Theorem 2.4 and the proof of Lmma 4.1 (see (4.4) and (4.5)) 
that there is an R E [6/2,6], 5 = S(X, K )  such that the annular domains A(,),  

has the property that 

Moreover, for all sufficiently large n (again by taking a subsequence of such n's 
if necessary), lu,,(x)l 2 on u4=I A y ) .  The latter follows from the fact that those 
balls B j ,  j = 1 , .  . . , N,, in Theorem 2.4 for u,, converge to a set consisting of at 
most N ,  points. 

Next, for each point y, ly - a, I = R, j = 1,.  . . , d, we let B be a ball centered 
at Y and of radius 

such that 

(4.10) 

is valid for a subsequence of n - 03 (see p. 57 in [23]). 

e,(ufl)dx + lB e,(u,,) C(A, K ) ,  

From (4. lo), it is not hard to derive that deg(u,,, 3B)  = 0 and that (1 I U , ~  1 - 
1 Il(x) 5 C(X, K ) E ~  for x E 6%. We want to show next that the subsequences of 
u, that satisfy (4.10) and 

are strongly convergent in H'(B) ,  and 

as n - +co. 
folfowing equations: 

For this purpose, we write u , ~  = p,leid31 on B so that +,I and pI1 satisfy the 

(4.1 1) div (~tV$tl)  = f n  E L2(B),  $n 1i)B E H'(8B)  7 

and 

(4.12) Ap,, + q(1 - p i )  - IV+,,I2p,, = g,, E 
En 
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with 

and 
on B 

(cf. (ii)). 

I 
IPn(x)I 2 - 2 

where I l f n l l L ? ( B )  + llgnIIL?(B) - O as n - 
as n - 00 where A$" = 0 in B, and t,hola~ 

is the weak limit of $ , , I i l H  in H'(dB). By the reverse Holder inequality and a 
Caccioppoli-type estimate for I V$,, I 2 ,  we see g, + pn I V$n I*  E L W )  for a fixed 

p > 1. This combines with (4.12) and the boundary estimate 1 - p ,  5 C(h, K ) d  
to imply that 1 - p,, 5 CE, ,  for some constants 

H ' ( B )  It is then easy to see $, - 
I 

P and C. 
We then multiply equation (4.12) by p,, and integrate it over B. Then 

Therefore, 
1 

? / ( I  - p;)2dx 5 c&f - 0 as n - oa 
En 6 

Next, let V, = p i  - 1. Then 

-AV, + Y V ,  = -2piIV$,12 + 2g,p, - 21Vp,I2 in B,  

(Vn 1 S C(A, K)E; 
I 

on d B .  
(4.14) 

We multiply (4.14) by V, and integrate it over B to obtain 

1 l IVV,I2 + -v2 
2Ei 

Note that IVVn(2 = 12pnVpn l 2  2 (Vp, 12; we conclude that u, - V in H'(B).  We 
cover the annular domains 

S ( x - ~ j )  S R + -  , j = l ,  ..., d ,  
6 
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by a finite number of such B's as above and find a subsequence of u, such that it 
strongly converges to V on these annular domains and 

goes to zero as n - m. 
Finally, we apply Fubini's theorem to obtain (4.7). 

4.3. Summary of Findings 

To summarize, we have proved the following: 

THEOREM 4.5. Let u,(x,t) be the solution of (4.2) with the initial data uij 
satisfying Assumption 3.1. Then, for any sequence of E, 1 0, there is a subsequence 
of{&,}, still denoted by {E,,}, such that the corresponding sequence { u , , ( x ,  t ) }  has 
the properties 
(i) for any t > 0, dist(u,,(x, t ) ,  S( t ) )  - 0 as n - m; and 

(ii) for almost all t > 0 and all V E S(t), 

and a = (al ,  . . . ,ad) is a critical point of W,(.) where dist(U, S( t ) )  = 
inf{(Ju - VIIL2(f1) : V E S(t)) .  

Remark 4.6. {S(t )  : t > 0} is dependent on the starting choices of E, 1 0. 
We do not know if part (ii) of Theorem 4.5 remains true if we define S(t)  to be 
the set of all possible w-limits of {uE(. ,  t ) ,  E > O}, that is, limits of any sequence 
{u,,(., t ) } ,  %I 4 0. 

COROLLARY 4.7. Assume the hypothesis of Theorem 4.5 and suppose that 
W,(.) has a unique critical point (which has to be the global minimum point of 
W,(.)). Then, as E - 0, 

in L,&(R x R,) where a = (al ,  . . .,ad) is the critical point of W,(.) and Ah(x) = 0 
in R with h(x) = h&) on XI. 

Proof It follows from Theorem 4.5 and the same arguments as in the proof 
of Theorem 3.7. 
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Remark 4.8. Theorem 4.5 and Corollary 4.7 show that the mobilities of vor- 
tices cannot be much larger than a multiple of log !. In [17], we also showed 
that when the initial data uz has vortices located near a local nondegenerate min- 
imum point a = ( a , ,  . . . ,a ( / )  of WJ.) and the energy E,(ug) is close to nd log : + 
yd  + W&) (cf. Corollary 2.6), then the vortices of u'(x, t),  t > 0, the solution of 
(1.1)-(1.3), will stay near the given vortices a l ,  . . . ,ad for all time t > 0. 

5. The log :-Scale Time Dynamics 

In Section 3 we showed that the vortices of u,(., t) ,  t > 0, do not move much in 
the initial time interval 0 5 t S 6 log whenever E is sufficiently small and 6 is a 
small number where uJx, t )  are solutions of (1.1)-(1.3) with initial data satisfying 
Assumptions 3.1 and 3.2. We also showed, in Section 4, that all the dynamics are 
essentially finished after a time of size M log :, where M is a sufficiently large 
number. Since the initial vortices, say b l ,  b2 , .  . . , b,], may not be critical points of 
W J . ) ,  and since after a time much larger than log all the vortices form a critical 
point of \Vx(.), we conclude that vortices have to move in the log time scale. 
Thus we consider the evolution equations: 

As we mentioned in the introduction, various formal asymptotic matching argu- 
ments (cf. [7] and [18]) show that the vortices a( t )  = (al( t ) ,  . . . , a d ( ? ) )  of a solution 
ue(., t )  of (5.1) satisfy 

(5.2) 
d 
--a(t) = -grad W,(a) .  
dt 

We are still not able to prove (5.2) is the case, even though our analysis indicates 
that such a law should be true. (This is shown in the remark following this paper.) 
We do, however, have the following theorem. 

THEOREM 5.1. Let ue(x, t ) ,  E > 0, be solutions of (5.1) with the initial data u; 
satisfying Assumptions 3.1 and 3.2, and let { u ~ , ~ } ,  E~ I 0, be a sequence of such 
solutions. Suppose that S( t )  is the class associated with the sequence { u , , }  (see 
the dejinition in Section 4) for  t 2 0. We dejine 

A(t)  = a(t)  = (a1 ( t ) ,  . . . , a d ( ? ) )  : There is a V E S( t )  of the form { 
(5.3) 
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Then we have Hausdog distance (A(t) ,  A(t + At)) 5 v(At) for all 6 > 0, At > 0, 
and v(At) - 0 as At - 0; and 

(5.4) 
5 r . lim [ E e , ,  (u&,!(., t ) )  - E , ,  (uE,,(., t + At)) ] . 

e,,-O 

Moreover; we may choose a suitable subsequence of {u,,!}, call it {V, , } ,  such that 
the class S'(t)  associated with {V, , }  has the properly that, for each V E S'(t) ,  

for some d distinct points a1 , . . . ,ad in 0. That is, the corresponding A' ( r )  consists 
of one point. 

Remark 5.2. The function inf ]grad W,,Ja(r))I2 inside the integral of (5.4) 

is a continuous function of r E [O,  m). In fact, it simply follows from the con- 
tinuity in the Hausdorff metric of these A'(t)'s and the continuity of grad W,(.) 
near all A(r) ,  7 E [0, m). 

We also note that 

n ( r ) E A ( r )  

(5 .5 )  

for a suitable sequence of E,, I 0 (which may depend on t and t + At). If we let 
S * ( t )  be the class associated with the family {ue, E > O}, that is, all w-limits of 
{ u E ,  E > 0). and let A * ( t )  be the corresponding set for each t > 0, then, by our 
choice of { u,,, }, 

(5.6) 

Proof of Theorem 5.1: The final statement of Theorem 5.1 follows from the 
same line of argument used in proving Theorem 3.7. It therefore suffices to verify 
both (5.4) and the continuity in the Hausdorff metric of sets A(r)  in t .  
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To show the continuity of sets A(t) in the Hausdorff metric, we let a = 
( a , , .  . . ,ad)  E A(t). Thus there is a subsequence {V , }  of {us,,}, v, = u,;,, such 
that 

and weakly in H ~ o c ( ~ ~ { a l , .  . . ,ad})  (cf. Lemma 4.1). Then we consider (5.1) with 
the initial data ug(x) = u,(x, r ) ,  E = &A. Let 

d 

4(x) E C1 (2) with 4(x) = 0 on u &(a;), 
j =  I 

and 

4(x) = 1 on 0 u &,(aj), 6 > 0 I j =  ( I  I 

and 6 < 6(A,K)  (see Theorem 2.4). 
By using calculations similar to those in (3.4) through (3.71, we obtain 

(5.7) 

(cf. also (3.14) through (3.16) with A, = log i). When At is a sufficiently small 
(independent of E; , )  positive number, any w-limit of the sequence {u&;,(-, t + At)} 
is a function V of the form 

(cf. Lemma 4.1). Moreover, la-iiJ 5 q(At) - 0 as At - 0. Here ii = ( i i l ,  . . . , i id) ,  
and the estimate la -6 I 5 q(At) is a consequence of Lemma 2.1, Theorem 2.4, and 
the estimate (5.7). In particular, there is an ii E A(r +At) such that la-iil 5 q(At). 
This shows that A(t)  is contained in an v(At)-neighborhood of A(t + At). 

Conversely, let ii E A(t + At), and let 

now consider the subsequence {u,;, (., t ) }  of {u,,, (., t)}. By Lemma 4.1 again, we 
may find a subsequence of {uE;, (., t ) } ,  which we shall still denote it by { V n } ,  that 
converges to a map v(x) of the form 
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We consider again (5.1) with the initial data V, (and corresponding E's).  Then, 
from the above proof, we see (a  - dl 5 v(At) is valid. Thus A(t + At) is also 
contained in an q(At)-neighborhood of A(r). This completes the proof of (5.3). 

To show (5.4), we employ some of the arguments used in the proof of Theorem 
4.5. In particular, the proof of the statements (4.7a) and (4.7b) will be needed. 
We want to show 

If (5.8) is proved, then (5.4) follows simply by an integration and Fatou's lemma 
from real variable theory. 

To show (5.8) for all 7 E [0, oo), we may assume that the right-hand side of 
(5.7) is not infinite, for otherwise the inequality is trivially valid. That is, we may 
assume 

(5.9) 

= p(7)  < cx). 

Let un(x) = U,;~(X, T),  n = 1,2,. . . , be a subsequence of {u,,,(., t ) }  that satisfies 
(5.9). By Lemma 4.1, we may also assume (by taking a subsequence of {u,} if 
necessary) that 

and weakly in 

As a result of (5.9), we have Ah,(x) = 0 in R. As in the proof of Theorem 4.5, we 
choose d balls, BR(aj),  j = 1 , .  . . , d, for some suitable R > 0. Then we multiply 
Aue + -$ u, (1 - (u, 12) by 2 and then integrate it over B&,) €or j = 1,2,. . . , d. 
Here E = 4. We obtain 

H:w (a\{al,-..*ad}) . 

- 

(5.10) 
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(cf. Theorem 4.3, E = .$, n = 1,2,. . . . 
We note that statements (4.7a) and (4.7b) are both true in the present situation 

if we substitute u,;,(x,T) for u,. Indeed, in all estimates (4.9) through (4.12) as 
well as in estimates (4.13) through (4.13, we need only the assumption that 

are uniformly bounded. From (5.9), this assumption is certainly justified. 
On the other hand, for k = 1,2, we have 

(5.1 1) 

As n - 
to 

(5.12) 

as in (4.8) 

00 and for k = 1,2, the left-hand side of the identity (5.10) converges 

. By calculations in the proof of Theorem VIII.3 of [2], (5.12) is exactly 
the gradient of W , ( - )  with respect to the a,-variable at the point a = ( a ) ,  . . . , a d ) ,  

which is equal to 27r grad H,(a,). Here we write v(x) = e'H,(x) for x near a, 
and elH,(x) = x--(ll , x - u , ,  . Therefore, we conclude 

(5.13) 

In the last inequality, we have used the fact that 

(cf. the proof of Lemma 4.1). Now the inequality (5.8) follows from (5.13). We 
have thus completed the proof of (5.4). 

We can now state two consequences of the proof for Theorem 5.1 and statement 
(5.4) and the continuity of the A(t)'s in the Hausdorff metric. 
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COROLLARY 5.3. Let { u l l }  be a sequence of maps in the class S,(h,K) with 
corresponding E = E,,, n = 1,2,. . . . Suppose that 

Then 

where 

Remark 5.4. The above result gives a proof of the observation made in [9]. 

Proof: If 
1 2 lim 1% - W E , ,  IIL'(Q) = +m 9 

E. En 

then there is nothing to show. If the infimum is finite, then we follow the last part 
of the proof of Theorem 5.1 to obtain the conclusion of Corollary 5.3. We should 
note that in the latter case Ah,, = 0 in R. 

COROLLARY 5.5.  Let u,(x,t), E > 0, be solutions of(5.1) with the initial data 
uc", satisjjCng Assumptions 3.1 and 3.2, and let 

6 ( ~ )  = E,(uc",) - lim E,(u,(., t ) ) ,  E > 0. 
1-x 

There is a positive constant 60 (depending only on W,(.) and K )  and a positive 
constant EO depending on K ,  g, and R such that, for all 0 < E 5 EO, either 
6 ( ~ )  2 SO or the following are true: 
(i) Jb - a1 = min { Ib - d l ,d  is a critical poinr of W,(.)} S C(E,  6(r)) for some 

critical point a of WR(.). Moreover; C(E, 6 ( ~ ) )  - 0 as 6 ( ~ )  - 0 and E - 0. 
(ii) For any converging sequence {ue,,(x)}, E, 1 0, the limit is afunctzon v of the 

form 

where ii = (GI, . . . , iid) is a critical point of W,(.) and u , , ( x )  = lim uE,,(x, t). 

Furthermore, the point ii has to lie in the same connected component as a in the 
critical point set of W,(.). In particular; W,(ii) = W,(a). 

f - . X  

Proof Let F = (6 E Rd : d is a critical point of W,(.) in ad}. Since W,(.) 
is analytic in a fixed neighborhood of F, say F , , ,  the po-neighborhood of F. By 
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the Lojasiewicz inequality (see [24]), we have two positive constants, y 2 2 and 
go E (0, PO), which depend only on W,(.) such that 

(5.14) lgrad W,(y)I 2 min{ao, distY(y, F ) )  . 

Let us show first that (i) is true when S ( E )  5 60, E 5 EO. Suppose, to the 
contrary, that (i) is false. Then there would be a sequence of E, - 0, S(E,) - 0 
and a sequence of points b,, = (by,. . . , b:) E ad such that the initial data u!,, 
would satisfy Assumptions 3.1 and 3.2 with b = (b, ,  . . . , b d )  = 6, and such that 
dist(b,,,F) 2 S > 0 for n = 1,2,. . . . 

+ K, one has W,(b,) 5 C(K) .  
In particular, the {blf} satisfy property (iv) of Theorem 2.4. That is, by,. . . , b: 
are d points that lie strictly inside R and strictly apart from each other for all 
n = 1,2,  .... Thus we may assume, without loss of generality, that b, - b as 
n - m. Then dist(b,F) 2 S > 0. 

. min{a& S2")  for all n 
sufficiently large. 

Since the energy bound E,,(u!,,) s r d  log 

From (5.6), we can deduce that lgrad W,(b,,)I2 2 

Let At > 0, which will be chosen later. Then, by (5.6), one has 

rAf  

On the other hand, (5.3) implies that, for all 0 < T 5 At, 

SUP la(.) - bl 5 q(At).  
( I (T )EA*(T)  

Therefore 
inf I grad W,(U(T)) I 2 I grad W,(b) 1 - Lq(Af) ,  

u(T)EA*  ( T )  

where L is the Lipschitz constant for the function ]grad W,(-)I2 defined on &q(Af)(b). 

We choose At > 0 so that 

1 
2 

2L77(At) = - min{ai, S 2 Y } .  

Then we conclude that the left-hand side of (5.15) is bounded below by At . 
4 min{a&S2y) > 0. This clearly contradicts (5.15). 

We have therefore proved that there are two positive constants So and eo so 
that either S ( E )  2 60 or (i) is true whenever 0 < E d EO. In particular, there is a 
critical point a E F of W,(.) such that la - bl = dist(b, F) 5 C(E, &)). 

Next, for any critical point ii of W,(.), we let F(ii) be the connected component 
of F containing the point ii. Since F is analytic, it is obvious that W,(ii) = W,(y )  

I 
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for all y E F(ii). Moreover, there is a small positive constant 0, depending on 
W,(.), such that for any i i l , i i 2 ,  E F, either F(ii1) = F(ii2) or dist (F(iil), F(ii2)) 2 U I  

(see [S], sections 3.4.5-3.4.12). 
We choose 60, EO suitably small so that 

SO 5 - 1 min{ ui, ( $)2y}At and C(E, 6 ( ~ ) )  5 - UI 

41r 3 
whenever E E (0, E O )  and &) E (0,60) where At > 0 is a number so that 

2L*v(At)= min{oi, (:)*'}, 
2 

77 : R, - R is a strictly monotonic function such that ~ ( 0 ' )  = 0, and L* is the 
Lipschitz norm of the function [grad W,(.)I2 on a $01-neighborhood of F(a). 

For such choices of EO and SO, we have both (i) and (ii) in Corollary 5.5. 
Indeed, the point b has to be in a ?-neighborhood of F(a) because the number 
C ( E , ~ ( E ) )  5 2. Let ii be as defined in Corollary 5.5. Then ii E F by [2] ,  chapter 
7. To show ii E F(a),  it suffices to show ii lies in a %-neighborhood of F(a). 

The latter fact follows from (5.4) and from the fact that the A*(T) ,  0 5 T < 03, 

are contained in a ?-neighborhood of F(a). Otherwise, we would again find a 
sequence of E, 1 0 and a sequence of initial data u; (satisfying Assumptions 3.1 
and 3.2 with b, = (by,. . . , b!) in a $-neighborhood of F(a)) such that there would 
be a sequence of time {T,} for which the corresponding 

with ii = ( b , ,  . . . , E d ) ,  dist (6, F(a))  = y .  Then, as a result of the above arguments, 
we would conclude that 

lim l i '&,,(~&,,( . ,  7,) - Ecn (uc , , ( . ,Tn  + At)) 
,-a 

This result obviously contradicts our choices of SO, At, and so on. We have thus 
completed the proof of Corollary 5.5. 

6. Final Remarks 

In conclusion, we would like to point out that the results in this paper can be 
generalized to the gradient flow of the energy functionals of the form 

(6.1) 
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where W ( x )  is a smooth, strictly positive function defined on R. 
For minimizers of (6.1), the generalizations of [2] to this case has been carried 

out in recent preprints [13] and [16]. Both of these two works seem to prove 
only the following conclusions. There are a sequence E, I 0 and a sequence of 
minimizers of (6.1) {u,,,}, with ue,# = g on do,  such that {u,} converges to 

in the space L2(R) r l  Zfiw(n\{a,, . . . ,ad}) where d = deg(g,dR),al,. . . ,ad are 
d distinct points so that a = (al, . . . ,ad) minimizes certain renormalized energy 
W(g, W, b), b E Rd (see [16]]). Here Ah, = 0 in R. 

Here we would like to add a few further remarks pertaining to the works of 
[13] and [16]. 

Remark 6.1. If u, is a minimizer of (6.1) with u, = g on dR, then u, E 
S,(A, K )  for some positive constants A, K depending only on g, R and the function 
W(x) .  Indeed, if we use E,, which is a minimizer of (6.1) with W(x) = 1, as a 
comparison function, then 

(6.3) 

Also, it is obvious that IVu,(x)l 5 C / E  for all x E 0 and for a constant C = 

a g ,  a, W ) .  

1 
E&(u,) S Eb(E,) 5 rd log - + K .  

E 

Since u, E S,(A,K), we may apply Theorem 2.4 and Lemma 4.1 to u,. It is 
clear that N, = d in the statement of Theorem 2.4 for u,. It is also clear from 
Lemma 4.1 that, for any sequence E, I 0, there is a subsequence of {u,,,} that 
converges to a map of the form u*  in (6.2). The fact that point a = ( a ~ ,  . . . ,ad) is 
a global minimum point of W(g,  w, b) follows from a simple argument as in 11611. 

Remark 6.2. When R is a smooth domain, we have 

2 
(6.4) 

as a minimizer u, of (6.1) with u, = g on dR. 

ll (Iu,l2 - 1) dx 5 C(g,R, W k 2  

To show (6.4), we let U, be a minimizer of 

and let 4 be a minimizer of 
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where m = rninrl W ( x ) ,  M = 2max0 W(x) .  Then it is clear that 

’I J [--IVU,I’ 1 + 9 (Iu,12 - 1)  dx (u, isaminimizer) 
( 1  2 4E2 

1 s 7rd log - + C(M,  g, Q )  , 
& 

and also that 

(6.6) 

Combining (6.5) and (6.6) yields 

(6.7) 1) 4&2 ( ( u , I 2 -  1) dx sC(m,g ,R)+C(M,g ,R) .  
W ( x )  - m 2 

Finally, (6.7) implies that (6.4) is true with C(g, 0, w )  9 [C(m,g, Q) + C(M,g, 

We also note that if R is simply connected, one may use Riemann mapping 
to transform R into a ball B .  Of course, the function W(x)  may also change, but 
it remains strictly positive and bounded. In this case, we do not have to use the 
hard estimate (cf. [21) 

0)l. :. 

in (6.6). Instead, we have 

Now, combining (6.8) and half of (6.6), we obtain that 
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Since we may assume here that R is a ball, and since L1 $(I@, l 2  - 1)2dx S C(g, R) 
is valid from the simple Pokhozhaev identity (see [2], 111.311, we see that (6.4) is 
true. 

Remark 6.3. In this paper we do not discuss the cases that uz(x) may have 
high-degree vortices or that the assumption E,(& 5 .rrd log + K may not be 
valid. It will be very interesting to see whether a vortex of degree d > 1 will 
immediately split into d vortices of degree 1 in the time evolution (1.1H1.3). 
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