The geometric average size of Selmer groups

Aaron Landesman

Stanford University

AMS Special Session on Stability in Topology, Arithmetic, and Representation Theory

The Ether
Ranks of elliptic curves

Theorem (Mordell-Weil)

Let E be an elliptic curve over a global field K (such as \mathbb{Q} or $\mathbb{F}_q(t)$). Then the group of K-rational points $E(K)$ is a finitely generated abelian group.

For E an elliptic curve over K, write $E(K) \cong \mathbb{Z}^r \oplus T$ for T a finite group. Then, r is the rank of E.

Question

What is the average rank of an elliptic curve?
Motivation

Conjecture (Minimalist Conjecture)

The average rank of elliptic curves is $1/2$. Moreover,

- 50% of curves have rank 0,
- 50% have rank 1,
- 0% have rank more than 1.

Goal

Explain why this holds, in an appropriate large q limit.
Definition of Selmer group

Let $K = \mathbb{F}_q(t)$, let E an elliptic curve over K, let \mathcal{E}^0 be the identity component of the Néron model for E over $\mathbb{P}^1_{\mathbb{F}_q}$ and let $\mathcal{E}^0[n]$ denote the n-torsion of \mathcal{E}.

Definition (non-standard)

The n-Selmer group of E is

$$\text{Sel}_n(E) := H^1(\mathbb{P}^1_{\mathbb{F}_q}, \mathcal{E}^0[n])$$
Lemma

The \mathbb{Z}/n rank of $\text{Sel}_n(E) = H^1(\mathbb{P}^1_{\mathbb{F}_q}, \mathcal{O}_0[n])$ is an upper bound for the rank of E.

Proof.

From the definition of Néron model, the rank of $H^0(\mathbb{P}^1, \mathcal{O})$ as an abelian group agrees with the rank of E.

Average size of Selmer groups

Say $E/\mathbb{F}_q(t)$ is in minimal Weierstrass form given by

$$y^2z = x^3 + A(s, t)xz^2 + B(s, t)z^3,$$

(so char $\mathbb{F}_q > 3$,) where there exists d so that $A(s, t)$ and $B(s, t)$ are homogeneous polynomials in $\mathbb{F}_q[s, t]$ of degrees $4d$ and $6d$. The **height** of E is

$$h(E) := d.$$

Definition

The **average size** of the n-Selmer group of height up to d is

$$\text{Average}^{\leq d}(\# \text{Sel}_n/\mathbb{F}_q(t)) := \frac{\sum_{E/\mathbb{F}_q(t), h(E) \leq d} \# \text{Sel}_n(E)}{\# \{E/\mathbb{F}_q(t) : h(E) \leq d\}},$$

where the sum runs over isomorphism classes of elliptic curves $E/\mathbb{F}_q(t)$, having $h(E) \leq d$.
Conjecture (Bhargava–Shankar and Poonen–Rains)

When all elliptic curves are ordered by height,

$$\lim_{q \to \infty} \lim_{d \to \infty} \text{Average}^{\leq d}(\# \text{Sel}_n / \mathbb{F}_q(t)) = \sum_{s|n} s.$$

Remark

- An analogous statement over \mathbb{Q} (without a limit in q) was shown for $n = 2, 3, 4, 5$ by Bhargava and Shankar.
- The upper bound was shown for $n = 3$ over $\mathbb{F}_q(t)$ by de Jong.
- This was shown for $n = 2$ more generally over function fields by Ho, Le Hung, and Ngo.
Main result

We can try to approach the conjecture by reversing the limits.

Conjecture: \[
\lim_{q \to \infty} \lim_{d \to \infty} \frac{\sum_{E/F_q, h(E) \leq d} \# \text{ Sel}_n(E)}{\# \{E : h(E) \leq d\}} = \sum_{s | n} s.
\]

Limits reversed:

\[
\sum_{E/F_q, h(E) \leq d} \frac{\# \text{ Sel}_n(E)}{\# \{E : h(E) \leq d\}} = \sum_{s | n} s.
\]

Theorem (L.)

For \(n \geq 1 \) and \(d \geq 2 \),

\[
\lim_{q \to \infty} \text{ Average}_{\gcd(q,2n)=1}^{\leq d} (\# \text{ Sel}_n / F_q(t)) = \sum_{s | n} s.
\]
The Distribution of Selmer groups

Theorem (L.)

For $n \geq 1$ and $d \geq 2$,

$$
\lim_{q \to \infty} \text{Average}^{\leq d}(\# \text{Sel}_n / \mathbb{F}_q(t)) = \sum_{s | n} s.
$$

Remark

More generally, Bhargava, Kane, Lenstra, Poonen, and Rains have conjectures predicting the full distribution. With Tony Feng and Eric Rains, we have proven their predictions in the large q limit as above.

In particular, we recover the minimalist conjecture (that the average rank of elliptic curves is $1/2$) in the large q limit.
Theorem (L)

For $n \geq 1$ and $d \geq 2$,

$$\lim_{q \to \infty} \text{Average}^{\leq d} (\# \text{Sel}_n / \mathbb{F}_q(t)) = \sum_{s \mid n} s.$$

Proof overview:

1. Construct a space $\text{Sel}^d_{n,k}$ parameterizing n-Selmer elements of elliptic curves of height d over k.

2. By Lang-Weil, the average size of the n-Selmer group is the number of components of $\text{Sel}^d_{n,k}$.

3. Compute the number of components of $\text{Sel}^d_{n,k}$ by viewing it as a finite cover of the moduli of height d elliptic curves, and computing the monodromy.
Proof sketch

For k a finite field, construct a space $\text{Sel}_{n,k}^d$ parameterizing pairs (E, X), where E is an elliptic curve over $k(t)$ and X is an n-Selmer element of E. Let \mathcal{W}_k^d denote a parameter space for Weierstrass equations of elliptic curves $E/k(t)$ of height d.

The total number of Selmer elements over varying elliptic curves over $k(t)$ is $\text{Sel}_{n,k}^d(k)$, so we are reduced to computing

$$\frac{\#\text{Sel}_{n,k}^d(k')}{\#\mathcal{W}_k^d(k')}$$

for large finite extensions k' of k.
Proof sketch, continued

We want to compute

\[
\frac{\# \text{Sel}_{n,k}^d(k')}{\# \mathcal{W}_k^d(k')}
\]

Theorem (Lang-Weil)

For X a finite type space over \mathbb{F}_p with r geometrically irreducible components, \(\lim_{q \to \infty} X(\mathbb{F}_q) = r q^{\dim X} + O(q^{\dim X - 1/2}) \).

So,

\[
\frac{\# \text{Sel}_{n,k}^d(k')}{\# \mathcal{W}_k^d(k')} = \frac{\# \text{components of Sel}_{n,k}^d}{\# \text{components of } \mathcal{W}_k^d} = \frac{\# \text{components of Sel}_{n,k}^d}{1} = \# \text{components of Sel}_{n,k}^d.
\]
Proof sketch, continued

To complete the proof, we want to show

$$\# \text{components of } \text{Sel}_{n,k}^d = \sum_{s | n} s.$$

Let $\mathcal{W}_k^\circ d \subset \mathcal{W}_k^d$ be the dense open parameterizing smooth Weierstrass models. Set up the fiber square

$$
\begin{array}{ccc}
\text{Sel}_{n,k}^\circ d & \longrightarrow & \text{Sel}_{n,k}^d \\
\downarrow \pi^\circ & & \downarrow \pi \\
\mathcal{W}_k^\circ d & \longrightarrow & \mathcal{W}_k^d.
\end{array}
$$

The resulting map π° is finite étale. Hence, we obtain a monodromy representation

$$\rho_k^d(n) : \pi_1^{\text{ét}}(\mathcal{W}_k^\circ d) \rightarrow \text{GL}(V_{n,k}^d).$$
Proof sketch, continued

Recall we are trying to compute \(\# \) components of \(\text{Sel}^{d}_{n,k} \), which is a finite étale cover of \(\mathcal{W}^{d}_{k} \) with monodromy representation \(\rho^{d}_{k}(n) : \pi_{\text{ét}}^{1}(\mathcal{W}^{d}_{k}) \rightarrow \text{GL}(V^{d}_{n,k}) \).

Therefore, the number of components is the number of orbits of \(\text{im} \rho^{d}_{k}(n) \).
Recall we are trying to compute \#components of $\text{Sel}^{\circ d}_{n,k}$, which is a finite \'{e}tale cover of $\mathcal{W}^{\circ d}_{k}$ with monodromy representation

$$\rho^d_k(n) : \pi_1^\text{\'{e}t}(\mathcal{W}^{\circ d}_{k}) \to \text{GL}(V^d_{n,k}).$$

Therefore, the number of components is the number of orbits of $\text{im } \rho^d_k(n)$.

Theorem

For n prime, there is a quadratic form q^d_n on $V^d_{n,k}$ so that, up to index 2, $\text{im } \rho^d_k(n) = O(q^d_n)$.

For n is prime, there are $n + 1$ orbits of $O(q^d_n)$, corresponding to the n level sets of q^d_n, along with the 0 vector. We find that for n prime,

$$\#\text{components of } \text{Sel}^{\circ d}_{n,k} = \#\text{orbits of } O(q^d_n) = n + 1 = \sum_{s|n} s.$$