
MA 558 - Embedding an n Variable Power Series Ring into a Two Variable Power
Series Ring

Our goal here is to prove that, if k is a field, then k [[x1, ..., xn]], the formal power series ring
in n variables over k, can be isomorphically embedded into k [[x, y]], the formal power series
ring in 2 variables over k, for each natural number n. The cases where n = 1 and n = 2 are
obvious.

We begin with some important definitions.

Definition. Let A be a ring and B be a subring. The subset {a1, ..., an} ⊂ A is said to
be algebraically independent over B if the homomorphism ϕ : B [x1, ..., xn]→ A defined by
ϕ (xi) = ai is injective. Or, equivalently, if there is no nonzero polynomial in B [x1, ..., xn]
with (a1, ..., an) as a root.

Algebraic independence has transitivity.

Proposition 1. Let C ⊂ B ⊂ A be a chain of subrings. Suppose {b1, ..., bn} ⊂ B is
algebraically independent over C. Further, suppose that {a1, ..., am} ⊂ A is algebraically
independent over B. Then {b1, ..., bn, a1, ..., am} ⊂ A is algebraically independent over C.

Proof. This follows from induction on the fact that R [x] [y] = R [x, y] for a ring R. �

Definition. Let A be a ring, I an A-ideal, and suppose A is complete and Hausdorff in
the I-adic topology. Let B be a subring of A. The subset {a1, ..., an} ⊂ I is said to be
analytically independent over B if the homomorphism ϕ : B [[x1, ..., xn]] → A defined by
ϕ (xi) = ai is injective. Or, equivalently, if there is no nonzero power series in B [[x1, ..., xn]]
with (a1, ..., an) as a root.

Analytic independence also has transitivity.

Proposition 2. Let C ⊂ B ⊂ A be a chain of subrings. Let J be a B-ideal and I be
an A-ideal so that B is complete and Hausdorff in the J-adic topology, A is complete and
Hausdorff in the I-adic topology, and that JA ⊂ I. Suppose {b1, ..., bn} ⊂ J is analytically
independent over C. Further, suppose that {a1, ..., am} ⊂ I is analytically independent over
B. Then {b1, ..., bn, a1, ..., am} ⊂ I is analytically independent over C.

Proof. This follows from induction on the fact that R [[x]] [[y]] = R [[x, y]] for a ring R, which
we will now prove.

One can show that R [[x, y]] ⊂ R [[x]] [[y]] by considering h (x, y) ∈ R [[x, y]]. We can collect
all terms with degree in y being 0, collect all terms with degree in y being 1, etc. This gives
a power series in y with coefficients in R [[x]].

Similarly, one can show that R [[x]] [[y]] ⊂ R [[x, y]] by considering a given power series
h (y) ∈ R [[x]] [[y]] with coefficients in R [[x]]. We can distribute each power of y to its
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coefficient power series, giving us a countable collection of power series a(j,0)y
j + a(j,1)xy

j +
a(j,2)x

2yj + ... + a(j,i)x
iyj + ... for each j.

We can then arrange all terms of all these power series into an array, as follows:

a(0,0) a(0,1)x ... a(0,i)x
i ...

a(1,0)y a(1,1)xy ... a(1,i)x
iy ...

a(2,0)y
2 a(2,1)xy

2 ... a(2,i)x
iy2 ...

...
a(j,0)y

j a(j,1)xy
j ... a(j,i)x

iyj ...
...

Following in a similar manner to Cantor’s proof that the rational numbers are countable, we
can form an infinite sum containing each of these terms by choosing an appropriate order
along the finite diagonals of this array. i.e., we can rewrite h (y) as a(0,0) + a(0,1)x + a(1,0)y +
a(0,2)x

2 + a(1,1)xy + a(2,0)y
2 + ..., a formal power series in both x and y. �

For the main result, we will restrict our attention to when k is a field. Notice that a
power series ring k [[x1, ..., xn]] is complete and Hausdorff in the (x1, ..., xn) k [[x1, ..., xn]]-
adic topology.

By the First Isomorphism Theorem and the definition of analytic independence, to show that
k [[x1, ..., xn]] can be isomorphically embedded into k [[x, y]], it suffices to show that there
exists an analytically independent set of n elements in (x, y) k [[x, y]].

Before we do this, however, we give a new condition, which is a weakening of algebraic
independence. This condition is sufficient to prove the main result, however, and makes
proving the result much easier.

Definition. Let A be a ring and B be a subring of A. A subset {a1, ..., an} ⊂ A is said
to be homogeneously independent over B if there is no nonzero homogeneous polynomial in
B [x1, ..., xn] with (a1, ..., an) as a root.

Just out of curiosity, one could ask if there is an equivalent definition of homogeneous inde-
pendence fitting with the ones we gave for algebraic independence and analytic independence.
Indeed, there is.

Proposition 3. Let B be a subring of A. Let {a1, ..., an} ⊂ A and consider the homo-

morphism ϕ : B [x1, ..., xn] → A where ϕ (xi) = ai. Treat B [x1, ..., xn] = R =
∞⊕

m=0

Rm as

the graded ring where Rm consists of all homogeneous polynomials of degree m. The set
{a1, ..., an} is homogeneously independent over B if and only if ϕ|Rm is injective for each m.

Proof. ϕ is merely the evaluation map at the point (a1, ..., an) ∈ An. If (a1, ..., an) satisfies
no nonzero homogeneous polynomials, then ϕ|Rm (f) 6= 0 whenever f 6= 0. Similarly, if
ϕ|Rm (f) 6= 0 for all 0 6= f ∈ Rm, then (a1, ..., an) satisfies no nonzero polynomial of Rm,
which are all the homogeneous polynomials of degree m. �
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It is fairly easy to see that homogeneous independence is a weakening of algebraic inde-
pendence. Certainly, if a set is algebraically independent over B, it is also homogeneously
independent over B. However, we can find sets which are homogeneously independent over
B which are not algebraically independent over B.

An example of this is the set {1}. Clearly, this set is not algebraically independent (as
it satisfies the polynomial x − 1 over B). However, this set is actually homogeneously
independent, which we will now prove.

Proof. Suppose f (1) = 0 for 0 6= f (x) ∈ B [x]. Then f (x) = (x− 1) g (x) for some
0 6= g (x) ∈ B [x]. Hence f (x) = xg (x)− g (x). Now, deg (xg (x)) > deg (g (x)) since x is a
non-zero-divisor, so f (x) is not homogeneous. �

One can ask whether or not homogeneous indepence has transitivity. It does not. For
example, {1} ⊂ Q is homogeneously independent over Z, and {2} ⊂ R is homogeneously
independent over Q, but {1, 2} ⊂ R is not homogeneously independent over Z, since (1, 2)
is a root of the homogeneous polynomial 2x1 − x2 over Z. We can get close to transitivity,
however.

Proposition 4. Let C ⊂ B ⊂ A be a chain of subrings. Let S = {b1, ..., bn} ⊂ B and
T = {a1, ..., am} ⊂ A. If S is homogeneously independent over C and T is algebraically
independent over B, then {b1, ..., bn, a1, ..., am} ⊂ A is homogeneously independent over C.

Proof. Suppose S is homogeneously independent over C and T is algebraically independent
over B. By the transitivity of algebraic independence (Proposition 1), it suffices to prove
the result for m = 1; i.e., T = {a}.

By way of contradiction, suppose 0 6= f (x1, ..., xn+1) ∈ C [x1, ..., xn+1] is a homogeneous
polynomial with (b1, ..., bn, a) as a root. Define g (xn+1) = f (b1, ..., bn, xn+1). Then g (xn+1) ∈
B [xn+1] is a polynomial in a single variable over B.

g (a) = f (b1, ..., bn, a) = 0, so g = 0, since a is algebraically independent over B.

Let h (x1, ..., xn) = f (x1, ..., xn, 0). It follows that h is a homogeneous polynomial over C,
since h is obtained by removing all terms of f which have xn+1 as a factor. i.e., h is the sum
of all the terms of f which do not have xn+1 as a factor.

h (b1, ..., bn) = f (b1, ..., bn, 0) = g (0) = 0, since g = 0. Since S is homogeneously independent
over C, it follows that h = 0. But since h is the sum of all the terms of f which do not have
xn+1 as a factor, it follows that xn+1 is a factor of f . Let d be the highest power of xn+1

which appears as a factor of every term of f .

Thus, f (x1, ..., xn+1) = xd
n+1p(x1, ..., xn+1) for some 0 6= p (x1, ..., xn+1) ∈ C [x1, ..., xn+1].

Since d is the highest power of xn+1 appearing as a factor in every term of f , it follows that
at least one term of p does not have xn+1 as a factor. Since 0 = g (xn+1) = f (b1, ..., bn, xn+1),
it follows that xd

n+1p (b1, ..., bn, xn+1) = 0. Thus, it follows that p (b1, ..., bn, xn+1) = 0. In
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particular, the sum of all the terms of p which do not have xn+1 as a factor forms a homo-
geneous polynomial of degree deg (f) − d over C which is satisfied by the homogeneously
independent set {b1, ..., bn} over C. Thus, every term of p (x1, ..., xn+1) has xn+1 as a factor,
which is a contradiction. Therefore f = 0, so {b1, ..., bn, a} is homogeneously independent
over C. �

We turn our attention back to the main question at hand. We want to show that there exist
n analytically independent power series in (x, y) k [[x, y]] over a field k.

To do this, we will first show the following fact, due to Zariski and Samuel.

Lemma 1. If the set of power series {f1 (x) , ..., fn (x)} ⊂ k [[x]] is homogeneously indepen-
dent over the field k, then the set of power series {yf1 (x) , ..., yfn (x)} ⊂ (x, y) k [[x, y]] is
analytically independent over k.

Proof. First, we notice that {yf1 (x) , ..., yfn (x)} ⊂ (x, y) k [[x, y]] since each is a multiple of
y.

Suppose g ∈ k [[x1, ..., xn]] such that g (yf1 (x) , ..., yfn (x)) = 0.

Notice that g can be written in the form g =
∞∑
j=0

gj where gj is a homogeneous polynomial

in k [x1, ..., xn] of degree j. Then

0 = g (yf1 (x) , ..., yfn (x)) =
∞∑
j=0

gj (yf1 (x) , ..., yfn (x))

Since each gj is a homogeneous polynomial of degree j and y is a factor of each element being
plugged into each variable, we get that gj (yf1 (x) , ..., yfn (x)) = gj (f1 (x) , ..., fn (x)) yj for
all j. Thus,

0 =
∞∑
j=0

gj (f1 (x) , ..., fn (x)) yj

Since each term contains a distinct power of y, it follows that gj (f1 (x) , ..., fn (x)) = 0 for
all j.

But since f1 (x) , ..., fn (x) are homogeneously independent over k, it follows that gj = 0 for
all j, and so g = 0. Therefore, yf1 (x) , ..., yfn (x) are analytically independent over k. �

By Lemma 1, in order to show that there exist n analytically independent elements in
k [[x, y]], it suffices to show that there exist n homogeneously independent elements of
k [[x]]. In fact, there are uncountably many algebraically independent elements of k [[x]]
over k (and hence uncountably many homogeneously independent elements), which is proven
in Integral Domains Inside Noetherian Power Series Rings: Constructions and Examples by
Heinzer, Rotthaus, and Wiegand. This proof involves showing that the transcendence degree
of k [[x]] over k is uncountable.
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We will use a different approach, by showing that there exists a set of 3 homogeneously
independent elements in k [[x]] over k and using induction to prove that if there is a set
of 3 analytically independent power series in k [[x, y]], then there is a set of n analytically
independent power series in k [[x, y]] for all n ≥ 3.

We begin by proving the latter result.

Lemma 2. If there exists a set of 3 analytically independent power series in (x, y) k [[x, y]],
then there exists a set of n analytically independent power series in (x, y) k [[x, y]] for all
n ≥ 3.

Proof. Suppose that there is a set {f1 (x, y) , f2 (x, y) , f3 (x, y)} ⊂ (x, y) k [[x, y]] analytically
independent over k. Later, we will prove that such a set exists, and it will serve as our base
case for induction here.

As an inductive hypothesis, suppose ∃ a set {f1 (x, y) , ..., fn−1 (x, y)} ⊂ (x, y) k [[x, y]] ana-
lytically independent over k.

Then we can consider k [[f1, ..., fn−1]] as a power series ring. Indeed, by the definition of
analytically independent, k [[f1, ..., fn−1]] is a subring of k [[x, y]]. Moreover, k [[f1, f2]] is a
subring of k [[f1, ..., fn−1]]. Since the ring k [[f1, ..., fn−1]] is a formal power series ring, it
follows that f3 is analytically independent over the entire subring k [[f1, f2]] of k [[x, y]].

Being a formal power series ring in two variables, k [[f1, f2]] ∼= k [[x, y]], so by the induction
hypothesis, ∃ an analytically independent set {g1, ..., gn−1} ⊂ (f1, f2) k [[f1, f2]] over k.

Since k ⊂ k [[f1, f2]] ⊂ k [[x, y]], k [[f1, f2]] is complete and Hausdorff in the (f1, f2) k [[f1, f2]]-
adic topology, k [[x, y]] is Hausdorff in the (x, y) k [[x, y]]-adic topology, (f1, f2) k [[x, y]] ⊂
(x, y) k [[x, y]], and since f3 is analytically independent over k [[f1, f2]], and {g1, ..., gn−1}
is analytically independent over k, it follows from Proposition 2 that {g1, ..., gn−1, f3} ⊂
(x, y) k [[x, y]] is analytically independent over k, giving us an analytically independent set
of n elements, completing the induction. �

Now, it just remains to show that there is a homogeneously independent set of 3 elements in
k [[x]] over k. The lemma would then give that we have 3 analytically independent elements
in k [[x, y]] over k.

Lemma 3. {1, x, f} ⊂ k [[x]] is homogeneously independent over k where

f (x) = 1 + x + x2! + x3! + ... + xn! + ...

Proof. We have already seen in the examples above that 1 ∈ k is homogeneously independent
over k. Moreover, x is algebraically independent over k. By Proposition 4, we then get that
{1, x} is homogeneously independent over k. To show that {1, x, f} is homogeneously inde-
pendent over k, it suffices, again by Proposition 4, to show that f is algebraically independent
over k [x]. Thus, it further suffices to show that f is transcendental over k (x).
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Suppose f is a root of a polynomial F (T ) = aq (x)T q + ... + a1 (x)T + a0 (x) where each
ai (x) ∈ k [x] (we may assume this by multiplying by the product of the denominators). Let
d = maxi {deg ai (x)}. We may assume F (T ) is irreducible over k (x), or else we could find
a polynomial of lower degree with f as a root.

Let p (x) be any polynomial. Then the power series f (x) − p (x) is a root of G (T ) =
F (T + p (x)). Then G (T ) = bq (x)T q + ... + b1 (x)T + b0 (x), where b0 (x) = aq (x) pq (x) +
... + a1 (x) p (x) + a0 (x). Since F (T ) is irreducible, it follows that G (T ) is irreducible. If
not G (T ) = H1 (T )H2 (T ), then F (T ) = G (T − p (x)) = H1 (T − p (x))H2 (T − p (x)), a
contradiction. Since G (T ) is irreducible, b0 (x) 6= 0.

We have the inequality deg b0 ≤ d + q · deg p.

Let n > max {d + 1, q + 1}. Now choose p (x) = 1 + x + x2! + ... + x(n−1)!. Now, deg p =
(n− 1)! Then

deg b0 ≤ d + q · deg p < (n− 1) + (n− 1) (n− 1)! ≤ (n− 1)! + (n− 1) (n− 1)! = n!

Thus, deg b0 < n!

On the other hand, f (x)− p (x) = xn! + x(n+1)! + ... and being a root of G gives

b0 (x) + b1 (x)
(
xn! + x(n+1)! + ...

)
+ ... + bq (x)

(
xn! + x(n+1)! + ...

)q
= 0

All of the terms above have xn! as a factor with the exception of b0 (x). Since deg b0 < n!, it
follows that in order for the above statement to be true, b0 (x) = 0, which is absurd as we’ve
already stated that b0 (x) 6= 0. Hence, f (x) is transcendental over k (x). �

We now prove the main result.

Theorem. Let n be any natural number, and let k be a field. The formal power series ring
k [[x1, ..., xn]] embeds isomorphically into the formal power series ring k [[x, y]].

Proof. For n = 1 and n = 2, the result is trivial. Suppose n ≥ 3.

By Lemma 3, there exists a set of 3 homogeneously independent power series in k [[x]] over
k. By Lemma 1, there then exists a set of 3 analytically independent power series in k [[x, y]]
over k. By Lemma 2, there then exists a set of n analytically independent power series in
k [[x, y]] over k.

By the definition of analytic independence and the First Isomorphism Theorem, we have the
result. �
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