Math 266, Practice Midterm 2

This is a 1-hour exam. No calculators or notes are allowed. Please show your work (except on multiple choice questions). Each multiple choice question has a single correct answer. If you finish early, you may bring your exam up to the front and leave the room.

Name: \qquad
Section: MWF 3:30-4:30 MWF 4:30-5:30

Useful things to remember: $1 \mathrm{~N}=1$ Newton $=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{gathered}
\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) . \\
\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) . \\
e^{i t}=\cos (t)+i \sin (t) .
\end{gathered}
$$

It's all right to leave answers that would require complicated arithmetic in unsimplified form.

1. Consider a differential equation of the form

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

Suppose that $\left\{y_{1}, y_{2}\right\}$ are an fundamental set of complex-valued solutions to the associated homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

with $y_{2}=\overline{y_{1}}$. Also suppose that $y=t^{2}$ is a solution to (1). What is the general real-valued solution to (1)?
(a) $y=t^{2}+C_{1} y_{1}+C_{2} y_{2}$
(b) $y=t^{2}+C_{1} \operatorname{Re}\left(y_{1}\right)+C_{2} \operatorname{Re}\left(y_{2}\right)$
(c) $y=t^{2}+C_{1} \operatorname{Re}\left(y_{1}\right)+C_{2} \operatorname{Im}\left(y_{1}\right)$
(d) $y=t^{2}+C_{1} \operatorname{Re}\left(y_{1}\right)+C_{2} \operatorname{Im}\left(y_{1}\right)+C_{3} \operatorname{Re}\left(y_{2}\right)+C_{4} \operatorname{Im}\left(y_{2}\right)$
2. Consider the first-order initial value problem

$$
y^{\prime}=t-y^{2}, \quad y(0)=y_{0} .
$$

What is the approximate value for $y(2)$ computed by Euler's method with step size 1 ?
(a) $y(2) \approx y_{0}-y_{0}^{2}+1-\left(y_{0}-y_{0}^{2}\right)^{2}$
(b) $y(2) \approx 2-y_{0}^{2}$
(c) $y(2) \approx 1-\left(y_{0}-y_{0}^{2}\right)^{2}$
(d) $y(2) \approx y_{0}+2-y_{0}^{2}-\left(y_{0}+1-y_{0}^{2}\right)^{2}$
3. An RLC circuit has a resistor with a variable resistance, R. The current I is described by the formula

$$
4 I^{\prime \prime}+R I^{\prime}+I / 4=0
$$

For what values of R will the current decrease over time and oscillate as it does so?
(a) $0<R<1$
(b) $0<R<2$
(c) $0 \leq R \leq 2$
(d) $0<R$
(e) $R \geq 2$
4. Consider a differential equation of the form

$$
y^{\prime \prime}+\alpha y^{\prime}+4 y=e^{2 t} .
$$

For what value(s) of α will the equation have a solution of the form $y=A t e^{2 t}$?
(a) $\alpha=-4$
(b) $\alpha=4$
(c) $\alpha= \pm 4$
(d) There is no such value of α.
5. The tides at Cardiff oscillate according to the formula

$$
y(t)=(5 \mathrm{in}) \cos (t /(12 \mathrm{hr}))+(1 \mathrm{ft}) \cos (t /(12 \mathrm{hr}) .
$$

(a) What are the amplitude and period of the motion?
(b) What is the first time after $t=0$ at which the tide is at its maximum?
6. Find the general solution to the equation

$$
t^{2} y^{\prime \prime}+t(t-3) y^{\prime}-(t-3) y=0, \quad t>0
$$

(Hint: one solution is $y=t$.)
7. Find any solution to the equation

$$
y^{\prime \prime}+y=1+\tan (x), \quad-\pi / 2<x<\pi / 2 .
$$

8. A 1 kg mass stretches a spring 0.4 m . The mass-spring system starts at equilibrium and is acted on by a variable force $F_{\text {ext }}(t)=\cos (5 t)$. Write the equation describing the displacement of the mass as a function of time, and describe in words what happens to the spring. You may assume that the spring is undamped and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(Scratch paper)
(Scratch paper)
