
Math 266, Practice Midterm 2

This is a 1-hour exam. No calculators or notes are allowed. Please show your work
(except on multiple choice questions). Each multiple choice question has a single correct
answer. If you finish early, you may bring your exam up to the front and leave the room.

Name:

Section: MWF 3:30-4:30 MWF 4:30 - 5:30

Useful things to remember: 1 N = 1 Newton = 1 kg ·m/s2.

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β).

eit = cos(t) + i sin(t).

It’s all right to leave answers that would require complicated arithmetic in unsimplified
form.
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1. Consider a differential equation of the form

y′′ + p(t)y′ + q(t)y = g(t). (1)

Suppose that {y1, y2} are an fundamental set of complex-valued solutions to the asso-
ciated homogeneous equation

y′′ + p(t)y′ + q(t)y = 0, (2)

with y2 = y1. Also suppose that y = t2 is a solution to (1). What is the general
real-valued solution to (1)?

(a) y = t2 + C1y1 + C2y2

(b) y = t2 + C1Re(y1) + C2Re(y2)

(c) y = t2 + C1Re(y1) + C2Im(y1)

(d) y = t2 + C1Re(y1) + C2Im(y1) + C3Re(y2) + C4Im(y2)

Since y2 = y1, we have Re(y1) = Re(y2) and Im(y1) = −Im(y2). In particular, Re(y1)
and Re(y2) are linearly dependent, so they can’t both be part of a fundamental set of
solutions to (2). This rules out (b) and (d). Since (a) is complex-valued, the correct
answer must be (c).

(Note that Re(y1) and Im(y1) can’t be linearly dependent. If they were, say Im(y1) =
bRe(y1), then y1 = (1 + ib)Re(y1), and then y2 = (1 − ib)Re(y1), which would make
y1 and y2 linearly dependent.)

2. Consider the first-order initial value problem

y′ = t− y2, y(0) = y0.

What is the approximate value for y(2) computed by Euler’s method with step size 1?

(a) y(2) ≈ y0 − y20 + 1− (y0 − y20)2

(b) y(2) ≈ 2− y20
(c) y(2) ≈ 1− (y0 − y20)2

(d) y(2) ≈ y0 + 2− y20 − (y0 + 1− y20)2

We calculate

y′(0) = 0− y(0)2 = −y20,
y(1) ≈ y(0) + 1 · y′(0) = y0 − y20,
y′(1) = 1− y(1)2 ≈ 1− (y0 − y20)2,

y(2) ≈ y(1) + 1 · y′(1) ≈ y0 − y20 + 1− (y0 − y20)2.

So the correct answer is (a).
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3. An RLC circuit has a resistor with a variable resistance, R. The current I is described
by the formula

4I ′′ +RI ′ + I/4 = 0.

For what values of R will the current decrease over time and oscillate as it does so?

(a) 0 < R < 1

(b) 0 < R < 2

(c) 0 ≤ R ≤ 2

(d) 0 < R

(e) R ≥ 2

The characteristic polynomial is

4r2 +Rr + 1/4 = 0,

which has roots

r =
−R±

√
R2 − 4

8
.

For the current to oscillate, the general solution must include sine and cosine terms.
This requires r to be non-real, meaning that R2 − 4 < 0 or |R| < 2. For the current
to decrease over time, the real part of r must be negative, which means that R > 0.
The correct answer is (b).

4. Consider a differential equation of the form

y′′ + αy′ + 4y = e2t.

For what value(s) of α will the equation have a solution of the form y = Ate2t?

(a) α = −4

(b) α = 4

(c) α = ±4

(d) There is no such value of α.

The right thing to use for y in the method of undetermined coefficients is y = Ae2t.
This will work unless e2t is a solution of the associated homogeneous equation,

y′′ + αy′ + 4y = 0. (3)

The characteristic polynomial of (3) is

r2 + αr + 4 = 0.

If this were to factor as (r − 2)(r − c) for some number c, we see by checking the
constant terms that c = 2, making α = −4. But in this case, the characteristic
polynomial has a repeated root, which means that the general solution to (3) is

y = C1e
2t + C2te

2t.

In particular, Ate2t is a solution to (3) and thus not a solution to the inhomogeneous
equation given. So the right answer is (d).
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5. The tides at Cardiff oscillate according to the formula

y(t) = (5 in) cos(t/(12 hr)) + (1 ft) cos(t/(12 hr)).

(a) What are the amplitude and period of the motion?

We want to write

y(t) = R cos(ωt− δ) = R cos(δ) cos(ωt) +R sin(δ) sin(ωt).

Comparing this with the given equation, we have ω = 1/(12 hr). This is the
frequency, and the period is 2π/12 hours. Moreover, the amplitude is

R =
√

52 + 122 in = 13 in.

We also have
δ = tan−1(12/5).

(Since both the coefficients are positive, δ is an angle in the first quadrant,
meaning that we don’t need to add π.)

(b) What is the first time after t = 0 at which the tide is at its maximum?

The above gave us
y = 13 · cos(t/12− tan−1(12/5)).

The function cos(x) hits its maximum when x is a multiple of 2π. Clearly, the
first of these multiples we will encounter here is when x = 0, or when

t = 12 · tan−1(12/5) hr.
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6. Find the general solution to the equation

t2y′′ + t(t− 3)y′ − (t− 3)y = 0, t > 0.

(Hint: one solution is y = t.)

We use the method of reduction of order. Suppose that a solution has the form y = tv.
Then y′ = tv′ + v and y′′ = tv′′ + 2v′. Substituting into the equation, we get

t2(tv′′ + 2v′) + t(t− 3)(tv′ + v)− (t− 3)(tv) = 0.

The terms involving v cancel, leaving

t3v′′ + 2t2v′ + t2(t− 3)v′ = 0.

Dividing by t2 (which is harmless because t > 0) gives

tv′′ = (1− t)v′.

Let w = v′; then this is a first-order equation for w, which separates to

1

w
dw =

1− t
t

dt =

(
1

t
− 1

)
dt.

Integrating gives
ln |w| = −t+ ln(t) + C (note that t > 0)

|w| = Ate−t (A > 0)

v′ = w = Ate−t (A arbitrary)

We can integrate this by parts to get

v = −Ate−t +

∫
Ae−t dt = −A(t+ 1)e−t +B.

So, relabelling −A as A, the general solution is

y = vt = A(t+ 1)te−t +Bt.
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7. Find any solution to the equation

y′′ + y = 1 + tan(x), −π/2 < x < π/2.

The associated homogeneous equation is

y′′ + y = 0,

which has general solution

y = C1 sin(x) + C2 cos(x).

For the inhomogeneous equation, we use variation of parameters, meaning we assume
the solution takes the form

y = u1 sin(x) + u2 cos(x).

We additionally assume
u′1 sin(x) + u′2 cos(x) = 0, (4)

which means that
y′ = u1 cos(x)− u2 sin(x).

Differentiating again gives

y′′ = u′1 cos(x)− u′2 sin(x)− u1 sin(x)− u2 cos(x).

Substituting into the original equation, we get

u′1 cos(x)− u′2 sin(x)− u1 sin(x)− u2 cos(x) + u1 sin(x) + u2 cos(x) = 1 + tan(x)

or
u′1 cos(x)− u′2 sin(x) = 1 + tan(x). (5)

Now, (4) implies that u′2 = −u′1 tan(x). Plugging this into (5), we see that

u′1 cos(x) + u′1 sin(x) tan(x) = 1 + tan(x)

u′1 cos2(x) + u′1 sin2(x) = cos(x) + sin(x)

u′1 = sin(x) + cos(x)

u1 = − cos(x) + sin(x) + C

Likewise, u′2 = −u′1 tan(x) = − sin2(x)/ cos(x) + sin(x). We can take the integral of
sin2(x)/ cos(x) by doing the substitution u = sin(x) and du = cos(x) dx. So∫

sin2(x)

cos(x)
dx =

∫
sin2(x) cos(x)

cos2(x)
dx

=

∫
u2

1− u2
du

= −1

2

∫ (
u

u− 1
+

u

u+ 1

)
du

= −1

2

∫ (
1 +

1

u− 1
+ 1− 1

u+ 1

)
du

= −u− 1

2
ln

∣∣∣∣u− 1

u+ 1

∣∣∣∣+ C

= − sin(x)− 1

2
ln

(
1− sin(x)

1 + sin(x)

)
+ C.
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Finally,

u2 = − cos(x) + sin(x) +
1

2
ln

(
1− sin(x)

1 + sin(x)

)
+ C.

Taking both constants of integration to be zero gives one solution:

y = sin2(x)− cos2(x) +
cos(x)

2
ln

(
1− sin(x)

1 + sin(x)

)
.

7



8. A 1 kg mass stretches a spring 0.4 m. The mass-spring system starts at equilibrium
and is acted on by a variable force Fext(t) = cos(5t). Write the equation describing the
displacement of the mass as a function of time, and describe in words what happens
to the spring. You may assume that the spring is undamped and g = 10 m/s2.

First we calculate the spring constant using mg = kL, or

k = mg/L = (1 kg)(10 m/s2)/(0.4 m) = 25 kg/s2.

The differential equation for the displacement of the mass is

u′′ + 25u = cos(5t).

We first solve the associated homogeneous equation,

u′′ + 25u = 0.

The characteristic polynomial is r2 + 25 = 0, with imaginary roots r = ±5i. So the general
solution to the homogeneous equation is

u = C1 cos(5t) + C2 sin(5t).

The inhomogeneous equation can now be solved in a number of ways – I’ll do variation
of parameters. We would like to try u = A cos(5t) + B sin(5t), but this overlaps with the
solutions to the associated homogeneous equation. So instead we will use

u = At cos(5t) +Bt sin(5t).

Then
u′ = A cos(5t) +B sin(5t)− 5At sin(5t) + 5Bt cos(5t),

u′′ = −10A sin(5t) + 10B cos(5t)− 25At cos(5t)− 25Bt sin(5t).

Substituting into the equation gives

u′′ + 25u = −10A sin(5t) + 10B cos(5t) = cos(5t).

Thus A = 0 and B = 1/10, and we get the particular solution

u =
1

10
t sin(5t).

The general solution is then

u =
1

10
t sin(5t) + C1 cos(5t) + C2 sin(5t).

Since the spring starts from equilibrium, we have u(0) = 0 and u′(0) = 0, which translates
to C1 = C2 = 0. So the equation of the spring’s motion is

u =
1

10
t sin(5t).

The spring oscillates with ever-increasing amplitudes (because the external force
is acting at the resonant frequency, and there is no damping to resist the growth of the
amplitude).
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(Scratch paper)
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(Scratch paper)
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