## Math 266, Practice Midterm 2

This is a 1-hour exam. No calculators or notes are allowed. Please show your work (except on multiple choice questions). Each multiple choice question has a single correct answer. If you finish early, you may bring your exam up to the front and leave the room.

Name: $\qquad$
Section: MWF 3:30-4:30 MWF 4:30-5:30

Useful things to remember: $1 \mathrm{~N}=1$ Newton $=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{gathered}
\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) . \\
\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) . \\
e^{i t}=\cos (t)+i \sin (t) .
\end{gathered}
$$

It's all right to leave answers that would require complicated arithmetic in unsimplified form.

1. Consider a differential equation of the form

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) . \tag{1}
\end{equation*}
$$

Suppose that $\left\{y_{1}, y_{2}\right\}$ are an fundamental set of complex-valued solutions to the associated homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \tag{2}
\end{equation*}
$$

with $y_{2}=\overline{y_{1}}$. Also suppose that $y=t^{2}$ is a solution to (1). What is the general real-valued solution to (1)?
(a) $y=t^{2}+C_{1} y_{1}+C_{2} y_{2}$
(b) $y=t^{2}+C_{1} \operatorname{Re}\left(y_{1}\right)+C_{2} \operatorname{Re}\left(y_{2}\right)$
(c) $y=t^{2}+C_{1} \operatorname{Re}\left(y_{1}\right)+C_{2} \operatorname{Im}\left(y_{1}\right)$
(d) $y=t^{2}+C_{1} \operatorname{Re}\left(y_{1}\right)+C_{2} \operatorname{Im}\left(y_{1}\right)+C_{3} \operatorname{Re}\left(y_{2}\right)+C_{4} \operatorname{Im}\left(y_{2}\right)$

Since $y_{2}=\overline{y_{1}}$, we have $\operatorname{Re}\left(y_{1}\right)=\operatorname{Re}\left(y_{2}\right)$ and $\operatorname{Im}\left(y_{1}\right)=-\operatorname{Im}\left(y_{2}\right)$. In particular, $\operatorname{Re}\left(y_{1}\right)$ and $\operatorname{Re}\left(y_{2}\right)$ are linearly dependent, so they can't both be part of a fundamental set of solutions to (2). This rules out (b) and (d). Since (a) is complex-valued, the correct answer must be (c).
(Note that $\operatorname{Re}\left(y_{1}\right)$ and $\operatorname{Im}\left(y_{1}\right)$ can't be linearly dependent. If they were, $\operatorname{say} \operatorname{Im}\left(y_{1}\right)=$ $b \operatorname{Re}\left(y_{1}\right)$, then $y_{1}=(1+i b) \operatorname{Re}\left(y_{1}\right)$, and then $y_{2}=(1-i b) \operatorname{Re}\left(y_{1}\right)$, which would make $y_{1}$ and $y_{2}$ linearly dependent.)
2. Consider the first-order initial value problem

$$
y^{\prime}=t-y^{2}, \quad y(0)=y_{0} .
$$

What is the approximate value for $y(2)$ computed by Euler's method with step size 1?
(a) $y(2) \approx y_{0}-y_{0}^{2}+1-\left(y_{0}-y_{0}^{2}\right)^{2}$
(b) $y(2) \approx 2-y_{0}^{2}$
(c) $y(2) \approx 1-\left(y_{0}-y_{0}^{2}\right)^{2}$
(d) $y(2) \approx y_{0}+2-y_{0}^{2}-\left(y_{0}+1-y_{0}^{2}\right)^{2}$

We calculate

$$
\begin{aligned}
y^{\prime}(0) & =0-y(0)^{2}=-y_{0}^{2}, \\
y(1) & \approx y(0)+1 \cdot y^{\prime}(0)=y_{0}-y_{0}^{2}, \\
y^{\prime}(1) & =1-y(1)^{2} \approx 1-\left(y_{0}-y_{0}^{2}\right)^{2}, \\
y(2) & \approx y(1)+1 \cdot y^{\prime}(1) \approx y_{0}-y_{0}^{2}+1-\left(y_{0}-y_{0}^{2}\right)^{2} .
\end{aligned}
$$

## So the correct answer is (a).

3. An RLC circuit has a resistor with a variable resistance, $R$. The current $I$ is described by the formula

$$
4 I^{\prime \prime}+R I^{\prime}+I / 4=0 .
$$

For what values of $R$ will the current decrease over time and oscillate as it does so?
(a) $0<R<1$
(b) $0<R<2$
(c) $0 \leq R \leq 2$
(d) $0<R$
(e) $R \geq 2$

The characteristic polynomial is

$$
4 r^{2}+R r+1 / 4=0
$$

which has roots

$$
r=\frac{-R \pm \sqrt{R^{2}-4}}{8}
$$

For the current to oscillate, the general solution must include sine and cosine terms. This requires $r$ to be non-real, meaning that $R^{2}-4<0$ or $|R|<2$. For the current to decrease over time, the real part of $r$ must be negative, which means that $R>0$. The correct answer is (b).
4. Consider a differential equation of the form

$$
y^{\prime \prime}+\alpha y^{\prime}+4 y=e^{2 t} .
$$

For what value(s) of $\alpha$ will the equation have a solution of the form $y=A t e^{2 t}$ ?
(a) $\alpha=-4$
(b) $\alpha=4$
(c) $\alpha= \pm 4$
(d) There is no such value of $\alpha$.

The right thing to use for $y$ in the method of undetermined coefficients is $y=A e^{2 t}$. This will work unless $e^{2 t}$ is a solution of the associated homogeneous equation,

$$
\begin{equation*}
y^{\prime \prime}+\alpha y^{\prime}+4 y=0 \tag{3}
\end{equation*}
$$

The characteristic polynomial of (3) is

$$
r^{2}+\alpha r+4=0
$$

If this were to factor as $(r-2)(r-c)$ for some number $c$, we see by checking the constant terms that $c=2$, making $\alpha=-4$. But in this case, the characteristic polynomial has a repeated root, which means that the general solution to (3) is

$$
y=C_{1} e^{2 t}+C_{2} t e^{2 t}
$$

In particular, $A t e^{2 t}$ is a solution to (3) and thus not a solution to the inhomogeneous equation given. So the right answer is (d).
5. The tides at Cardiff oscillate according to the formula

$$
y(t)=(5 \mathrm{in}) \cos (t /(12 \mathrm{hr}))+(1 \mathrm{ft}) \cos (t /(12 \mathrm{hr})) .
$$

(a) What are the amplitude and period of the motion?

We want to write

$$
y(t)=R \cos (\omega t-\delta)=R \cos (\delta) \cos (\omega t)+R \sin (\delta) \sin (\omega t)
$$

Comparing this with the given equation, we have $\omega=1 /(12 \mathrm{hr})$. This is the frequency, and the period is $2 \pi / 12$ hours. Moreover, the amplitude is

$$
R=\sqrt{5^{2}+12^{2}} \mathrm{in}=13 \mathrm{in} .
$$

We also have

$$
\delta=\tan ^{-1}(12 / 5)
$$

(Since both the coefficients are positive, $\delta$ is an angle in the first quadrant, meaning that we don't need to add $\pi$.)
(b) What is the first time after $t=0$ at which the tide is at its maximum?

The above gave us

$$
y=13 \cdot \cos \left(t / 12-\tan ^{-1}(12 / 5)\right)
$$

The function $\cos (x)$ hits its maximum when $x$ is a multiple of $2 \pi$. Clearly, the first of these multiples we will encounter here is when $x=0$, or when

$$
t=12 \cdot \tan ^{-1}(12 / 5) \mathrm{hr} .
$$

6. Find the general solution to the equation

$$
t^{2} y^{\prime \prime}+t(t-3) y^{\prime}-(t-3) y=0, \quad t>0 .
$$

(Hint: one solution is $y=t$.)
We use the method of reduction of order. Suppose that a solution has the form $y=t v$. Then $y^{\prime}=t v^{\prime}+v$ and $y^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}$. Substituting into the equation, we get

$$
t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+t(t-3)\left(t v^{\prime}+v\right)-(t-3)(t v)=0 .
$$

The terms involving $v$ cancel, leaving

$$
t^{3} v^{\prime \prime}+2 t^{2} v^{\prime}+t^{2}(t-3) v^{\prime}=0
$$

Dividing by $t^{2}$ (which is harmless because $t>0$ ) gives

$$
t v^{\prime \prime}=(1-t) v^{\prime} .
$$

Let $w=v^{\prime}$; then this is a first-order equation for $w$, which separates to

$$
\frac{1}{w} d w=\frac{1-t}{t} d t=\left(\frac{1}{t}-1\right) d t .
$$

Integrating gives

$$
\begin{gathered}
\ln |w|=-t+\ln (t)+C \quad(\text { note that } t>0) \\
|w|=A t e^{-t} \quad(A>0) \\
v^{\prime}=w=A t e^{-t} \quad(A \text { arbitrary })
\end{gathered}
$$

We can integrate this by parts to get

$$
v=-A t e^{-t}+\int A e^{-t} d t=-A(t+1) e^{-t}+B
$$

So, relabelling $-A$ as $A$, the general solution is

$$
y=v t=A(t+1) t e^{-t}+B t .
$$

7. Find any solution to the equation

$$
y^{\prime \prime}+y=1+\tan (x), \quad-\pi / 2<x<\pi / 2 .
$$

The associated homogeneous equation is

$$
y^{\prime \prime}+y=0,
$$

which has general solution

$$
y=C_{1} \sin (x)+C_{2} \cos (x) .
$$

For the inhomogeneous equation, we use variation of parameters, meaning we assume the solution takes the form

$$
y=u_{1} \sin (x)+u_{2} \cos (x) .
$$

We additionally assume

$$
\begin{equation*}
u_{1}^{\prime} \sin (x)+u_{2}^{\prime} \cos (x)=0, \tag{4}
\end{equation*}
$$

which means that

$$
y^{\prime}=u_{1} \cos (x)-u_{2} \sin (x) .
$$

Differentiating again gives

$$
y^{\prime \prime}=u_{1}^{\prime} \cos (x)-u_{2}^{\prime} \sin (x)-u_{1} \sin (x)-u_{2} \cos (x) .
$$

Substituting into the original equation, we get

$$
u_{1}^{\prime} \cos (x)-u_{2}^{\prime} \sin (x)-u_{1} \sin (x)-u_{2} \cos (x)+u_{1} \sin (x)+u_{2} \cos (x)=1+\tan (x)
$$

or

$$
\begin{equation*}
u_{1}^{\prime} \cos (x)-u_{2}^{\prime} \sin (x)=1+\tan (x) . \tag{5}
\end{equation*}
$$

Now, (4) implies that $u_{2}^{\prime}=-u_{1}^{\prime} \tan (x)$. Plugging this into (5), we see that

$$
\begin{aligned}
u_{1}^{\prime} \cos (x)+u_{1}^{\prime} \sin (x) \tan (x) & =1+\tan (x) \\
u_{1}^{\prime} \cos ^{2}(x)+u_{1}^{\prime} \sin ^{2}(x) & =\cos (x)+\sin (x) \\
u_{1}^{\prime} & =\sin (x)+\cos (x) \\
u_{1} & =-\cos (x)+\sin (x)+C
\end{aligned}
$$

Likewise, $u_{2}^{\prime}=-u_{1}^{\prime} \tan (x)=-\sin ^{2}(x) / \cos (x)+\sin (x)$. We can take the integral of $\sin ^{2}(x) / \cos (x)$ by doing the substitution $u=\sin (x)$ and $d u=\cos (x) d x$. So

$$
\begin{aligned}
\int \frac{\sin ^{2}(x)}{\cos (x)} d x & =\int \frac{\sin ^{2}(x) \cos (x)}{\cos ^{2}(x)} d x \\
& =\int \frac{u^{2}}{1-u^{2}} d u \\
& =-\frac{1}{2} \int\left(\frac{u}{u-1}+\frac{u}{u+1}\right) d u \\
& =-\frac{1}{2} \int\left(1+\frac{1}{u-1}+1-\frac{1}{u+1}\right) d u \\
& =-u-\frac{1}{2} \ln \left|\frac{u-1}{u+1}\right|+C \\
& =-\sin (x)-\frac{1}{2} \ln \left(\frac{1-\sin (x)}{1+\sin (x)}\right)+C .
\end{aligned}
$$

Finally,

$$
u_{2}=-\cos (x)+\sin (x)+\frac{1}{2} \ln \left(\frac{1-\sin (x)}{1+\sin (x)}\right)+C .
$$

Taking both constants of integration to be zero gives one solution:

$$
y=\sin ^{2}(x)-\cos ^{2}(x)+\frac{\cos (x)}{2} \ln \left(\frac{1-\sin (x)}{1+\sin (x)}\right) .
$$

8. A 1 kg mass stretches a spring 0.4 m . The mass-spring system starts at equilibrium and is acted on by a variable force $F_{\text {ext }}(t)=\cos (5 t)$. Write the equation describing the displacement of the mass as a function of time, and describe in words what happens to the spring. You may assume that the spring is undamped and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

First we calculate the spring constant using $m g=k L$, or

$$
k=m g / L=(1 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) /(0.4 \mathrm{~m})=25 \mathrm{~kg} / \mathrm{s}^{2} .
$$

The differential equation for the displacement of the mass is

$$
u^{\prime \prime}+25 u=\cos (5 t)
$$

We first solve the associated homogeneous equation,

$$
u^{\prime \prime}+25 u=0 .
$$

The characteristic polynomial is $r^{2}+25=0$, with imaginary roots $r= \pm 5 i$. So the general solution to the homogeneous equation is

$$
u=C_{1} \cos (5 t)+C_{2} \sin (5 t)
$$

The inhomogeneous equation can now be solved in a number of ways - I'll do variation of parameters. We would like to try $u=A \cos (5 t)+B \sin (5 t)$, but this overlaps with the solutions to the associated homogeneous equation. So instead we will use

$$
u=A t \cos (5 t)+B t \sin (5 t) .
$$

Then

$$
\begin{gathered}
u^{\prime}=A \cos (5 t)+B \sin (5 t)-5 A t \sin (5 t)+5 B t \cos (5 t), \\
u^{\prime \prime}=-10 A \sin (5 t)+10 B \cos (5 t)-25 A t \cos (5 t)-25 B t \sin (5 t) .
\end{gathered}
$$

Substituting into the equation gives

$$
u^{\prime \prime}+25 u=-10 A \sin (5 t)+10 B \cos (5 t)=\cos (5 t) .
$$

Thus $A=0$ and $B=1 / 10$, and we get the particular solution

$$
u=\frac{1}{10} t \sin (5 t) .
$$

The general solution is then

$$
u=\frac{1}{10} t \sin (5 t)+C_{1} \cos (5 t)+C_{2} \sin (5 t)
$$

Since the spring starts from equilibrium, we have $u(0)=0$ and $u^{\prime}(0)=0$, which translates to $C_{1}=C_{2}=0$. So the equation of the spring's motion is

$$
u=\frac{1}{10} t \sin (5 t) .
$$

The spring oscillates with ever-increasing amplitudes (because the external force is acting at the resonant frequency, and there is no damping to resist the growth of the amplitude).
(Scratch paper)
(Scratch paper)

