# AN EXAMPLE OF REDUCTION OF ORDER 

PAUL VANKOUGHNETT

Consider the differential equation

$$
\begin{equation*}
(t-1) y^{\prime \prime}-t y^{\prime}+y=0 . \tag{1}
\end{equation*}
$$

This doesn't fall into any of the nice classes of equation that we've studied. Nevertheless, one solution to this is

$$
y_{1}=e^{t} .
$$

You might be able to guess this, for example, by noting that the coefficients add up to $(t-1)-t+1=0$, so that if $y^{\prime \prime}=y^{\prime}=y$, then the solution is zero; and the only way (not counting scalar multiples) to make $y^{\prime \prime}=y^{\prime}=y$ is to put $y=e^{t}$. Or you might have found it by trying different functions and seeing what got things to cancel out.

Let $y_{2}=y_{1} v$. Then

$$
\begin{aligned}
& y_{2}^{\prime}=y_{1}^{\prime} v+y_{1} v^{\prime}, \\
& y_{2}^{\prime \prime}=y_{1}^{\prime \prime} v+2 y_{1}^{\prime} v^{\prime}+y_{1} v^{\prime \prime} .
\end{aligned}
$$

Substituting this into the original equation gives

$$
(t-1)\left(y_{1}^{\prime \prime} v+2 y_{1}^{\prime} v^{\prime}+y_{1} v^{\prime \prime}\right)-t\left(y_{1}^{\prime} v+y_{1} v^{\prime}\right)+y_{1} v=0
$$

and we can rearrange the terms to get

$$
(t-1) y_{1} v^{\prime \prime}+\left[2(t-1) y_{1}^{\prime}-y_{1} t\right] v^{\prime}+\left[(t-1) y_{1}^{\prime \prime}-t y_{1}^{\prime}+y_{1}\right] v=0 .
$$

The coefficient of $v$ is just what you get from plugging $y_{1}$ into (1). Since $y_{1}$ was a solution to the equation, this coefficient is zero. We get

$$
(t-1) e^{t} v^{\prime \prime}+\left[2(t-1) e^{t}-t e^{t}\right] v^{\prime}=0
$$

We can divide by $e^{t}$, since it's nonzero everywhere.

$$
(t-1) v^{\prime \prime}+(t-2) v^{\prime}=0
$$

(If you're in my $3: 30$ class - this last step is where I made a mistake. I got $2 t-3$ rather than $t-2$ for the coefficient of $v^{\prime}$.)

Now let $w=v^{\prime}$. We have a first-order equation for $w$ :

$$
(t-1) w^{\prime}+(t-2) w=0
$$

This is separable. In fact, you'll always get a separable equation at this point - do you see why? We separate the variables to get

$$
\int \frac{1}{w} d w=\int-\frac{t-2}{t-1} d t=\int\left(-1+\frac{1}{t-1}\right) d t .
$$

Integrating gives

$$
\ln |w|=-t+\ln |t-1|+C
$$

or

$$
|w|=e^{-t} \cdot|t-1| \cdot e^{C} .
$$

Writing $A= \pm e^{C}$ lets us remove the absolute value signs.

$$
w=A(t-1) e^{-t} .
$$

We now have to integrate $w$ to get $v$.

$$
\begin{equation*}
v=\int A(t-1) e^{-t} d t=\int A t e^{-t} d t-\int A e^{-t} d t \tag{2}
\end{equation*}
$$

The first integral is done by parts. Let $f=A t$ and $d g=e^{-t} d t$, so that $d f=A d t$ and $g=-e^{-t}$. Then

$$
\int A t e^{-t} d t=\int f d g=f g-\int g d f=-A t e^{-t}+\int A e^{-t} d t
$$

Putting this back into (2), the two remaining integrals cancel out except for a constant. So

$$
v=-A t e^{-t}+C .
$$

Finally,

$$
y_{2}=y_{1} v=-A t+C e^{t} .
$$

Since we never picked $A$ and $C$, this gave us the general solution to (1). There's a simple reason for this: any solution can be written as $y=y_{1} v$ - just define $v=y / y_{1}$ ! A fundamental set of solutions is given by $\left\{e^{t}, t\right\}$.

You should check for yourself that $t$ actually solves (1). Since this is also a very simple function, you might have found it first in the playing-around-with-the-equation stage - and then you could use reduction of order to find the other fundamental solution, $e^{t}$.

